Skip to main content Accessibility help
×
Home

A COMPARISON OF CRITICAL TIME DEFINITIONS IN MULTILAYER DIFFUSION

  • R. I. HICKSON (a1) (a2), S. I. BARRY (a2), H. S. SIDHU (a1) and G. N. MERCER (a1) (a2)

Abstract

There are many ways to define how long diffusive processes take, and an appropriate “critical time” is highly dependent on the specific application. In particular, we are interested in diffusive processes through multilayered materials, which have applications to a wide range of areas. Here we perform a comprehensive comparison of six critical time definitions, outlining their strengths, weaknesses, and potential applications. A further four definitions are also briefly considered. Equivalences between appropriate definitions are determined in the asymptotic limit as the number of layers becomes large. Relatively simple approximations are obtained for the critical time definitions. The approximations are more accessible than inverting the analytical solution for time, and surprisingly accurate. The key definitions, their behaviour and approximations are summarized in tables.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A COMPARISON OF CRITICAL TIME DEFINITIONS IN MULTILAYER DIFFUSION
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A COMPARISON OF CRITICAL TIME DEFINITIONS IN MULTILAYER DIFFUSION
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A COMPARISON OF CRITICAL TIME DEFINITIONS IN MULTILAYER DIFFUSION
      Available formats
      ×

Copyright

Corresponding author

For correspondence; e-mail: R.Hickson@UNSWalumni.com

References

Hide All
[1]Allwright, D., Blount, M., Gramberg, H. and Hewitt, I., Reaction–diffusion models of decontamination. Study group report (ESGI 2009, Southampton), Smith Institute, 2009, http://www.smithinst.ac.uk/Projects/ESGI68/ESGI68-DSTL/Report.
[2]Barrer, R. M., “Diffusion and permeation in heterogeneous media”, in: Diffusion in polymers (eds Crank, J. and Park, G. S.), (Academic Press, London, 1968) 165217.
[3]Barry, S. I. and Sweatman, W. L., “Modelling heat transfer in steel coils”, ANZIAM J. (E) 50 (2009) C668C681.
[4]Crank, J., The mathematics of diffusion (Oxford University Press, London, 1957).
[5]de Monte, F., Beck, J. V. and Amos, D. E., “Diffusion of thermal disturbances in two-dimensional cartesian transient heat conduction”, Int. J. Heat Mass Tran. 51 (2008) 59315941; doi:10.1016/j.ijheatmasstransfer.2008.05.015.
[6]Frisch, H. L., “The time lag in diffusion”, J. Phys. Chem. 62 (1957) 401404; doi:10.1021/j150547a018.
[7]Graff, G. L., Williford, R. E. and Burrows, P. E., “Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation”, J. Appl. Phys. 96 (2004) 18401849; doi:10.1063/1.1768610.
[8]Hickson, R. I., “Critical times of heat and mass transport through multiple layers”, Ph.D. Thesis, PEMS, UNSW@ADFA, April 2010.
[9]Hickson, R. I., Barry, S. I. and Mercer, G. N., “Critical times in multilayer diffusion. Part 1: Exact solutions”, Int. J. Heat Mass Tran. 52 (2009) 57765783; doi:10.1016/j.ijheatmasstransfer.2009.08.013.
[10]Hickson, R. I., Barry, S. I. and Mercer, G. N., “Critical times in multilayer diffusion. Part 2: Approximate solutions”, Int. J. Heat Mass Tran. 52 (2009) 57845791; doi:10.1016/j.ijheatmasstransfer.2009.08.012.
[11]Hickson, R. I., Barry, S. I. and Mercer, G. N., “Exact and numerical solutions for effective diffusivity and time lag through multiple layers”, ANZIAM J. (E) 49 (2009) C324C340.
[12]Hickson, R. I., Barry, S. I., Mercer, G. N. and Sidhu, H. S., “Finite difference schemes for multilayer diffusion”, Math. Comput. Model. 54 (2011) 210220; doi:10.1016/j.mcm.2011.02.003.
[13]Hickson, R. I., Barry, S. I. and Sidhu, H. S., “Critical times in one- and two-layered diffusion”, AJEE 15 (2009) 7784; http://www.engineersmedia.com.au/journals/aaee/pdf/AJEE_15_2_Hickson.pdf.
[14]Hickson, R. I., Barry, S. I., Sidhu, H. S. and Mercer, G. N., “Critical times in single-layer reaction diffusion”, Int. J. Heat Mass Tran. 54 (2011) 26422650; doi:10.1016/j.ijheatmasstransfer.2009.08.012.
[15]Landman, K. and McGuinness, M., “Mean action time for diffusive processes”, J. Appl. Math. Decis. Sci. 4 (2000) 125141; doi:10.1155/S1173912600000092.
[16]McGuinness, M., Sweatman, W., Boawan, D. and Barry, S., “Annealing steel coils”, in: Proceedings of the 2008 MISG (eds T. Marchant, M. Edwards and G. Mercer), 2009, http://www.uow.edu.au/content/groups/public/@web/@inf/@math/documents/doc/uow053938.pdf.
[17]McNabb, A., “Mean action times, time lags and mean first passage times for some diffusion problems”, Math. Comput. Model. 18 (1993) 123129; doi:10.1016/0895-7177(93)90221-J.
[18]McNabb, A. and Wake, G. C., “Heat conduction and finite measures for transition times between steady states”, IMA J. Appl. Math. 47 (1991) 193206; doi:10.1093/imamat/47.2.193.
[19]Petrovskii, S. and Shigesada, N., “Some exact solutions of a generalized Fisher equation related to the problem of biological invasion”, Math. Biosci. 172 (2001) 7394; doi:10.1016/S0025-5564(01)00068-2.
[20]Siegel, R. A., “A Laplace transform technique for calculating diffusion time lags”, J. Membr. Sci. 26 (1986) 251262; doi:10.1016/S0376-7388(00)82110-9.
[21]Siegel, R. A., “Algebraic, differential, and integral relations for membranes in series and other multilaminar media: permeabilities, solute consumption, lag times, and mean first passage times”, J. Phys. Chem. 95 (1991) 25562565; doi:10.1021/j100159a083.
[22]Thornton, A. W., Hilder, T., Hill, A. J. and Hill, J. M., “Predicting gas diffusion regime within pores of different size, shape and composition”, J. Membr. Sci. 336 (2009) 101108; doi:10.1016/j.memsci.2009.03.019.
[23]Yuen, W. Y. D., “Transient temperature distribution in a multilayer medium subject to radiative surface cooling”, Appl. Math. Model. 18 (1994) 93100; doi:10.1016/0307-904X(94)90164-3.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed