Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T21:45:47.069Z Has data issue: false hasContentIssue false

Suspected meteorite fragments in marine sediments from East Antarctica

Published online by Cambridge University Press:  05 October 2018

Naresh C. Pant
Affiliation:
Centre for Advanced Studies, Department of Geology, University of Delhi, Delhi-11007, India
Francisco J. Jimenez-Espejo*
Affiliation:
Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
Cary P. Cook
Affiliation:
The Grantham Institute for Climate Change, Imperial College London, London SW7 2AZ, UK Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
Paromita Biswas
Affiliation:
Centre for Advanced Studies, Department of Geology, University of Delhi, Delhi-11007, India
Robert Mckay
Affiliation:
Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
Claudio Marchesi
Affiliation:
Departamento de Mineralogía y Petrología, UGR, 18002 Granada, Spain Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, 18100 Armilla, Granada, Spain
Motoo Ito
Affiliation:
Kochi Institute for Core Sample Research, JAMSTEC, Kochi 783-8502, Japan
Dewashish Upadhyay
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, 721302 Kharagpur, India
Junichiro Kuroda
Affiliation:
Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
Kenji Shimizu
Affiliation:
Kochi Institute for Core Sample Research, JAMSTEC, Kochi 783-8502, Japan
Ryoko Senda
Affiliation:
Faculty of Social and Cultural Studies, Kyushu University, 744, Motooka Nishi-ku Fukuoka, 819-0395, Japan
Tina Van De Flierdt
Affiliation:
Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
Yoshinori Takano
Affiliation:
Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
Katsuhiko Suzuki
Affiliation:
Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
Carlota Escutia
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, 18100 Armilla, Granada, Spain
Prakash K. Shrivastava
Affiliation:
Geological Survey of India, Faridabad, India

Abstract

Unusual mafic rock fragments deposited in Plio-Pleistocene-aged marine sediments were recorded at Integrated Ocean Drilling Program (IODP) Site U1359, in Wilkes Land, East Antarctica. These fragments were identified from sediment layers deposited between c. 3 and 1.2 Ma, indicating a sustained supply during this time interval. Clinopyroxenes in these basalts are Al–Ti diopside–hedenbergite, uncommon in terrestrial magmatic rocks. A single strong peak in the Raman spectra of a phosphate-bearing mineral at 963 cm-1 supports the presence of merrillite. Although not conclusive, petrological traits and oxygen isotopic compositions also suggest that the fragments may be extra-terrestrial fragments affected by shock metamorphism. Nevertheless, it is concluded that the basaltic fragments incorporated in marine sediments at Site U1359 represent ice-rafted material supplied to the continental rise of East Antarctica, probably from the bedrocks near the proximal Ninnis Glacier. Further studies on Plio-Pleistocene sediments near Site U1359 are required to characterize the unusual mafic rocks described.

Type
Earth Sciences
Copyright
© Antarctic Science Ltd 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, M., Taylor, L.A., Floss, C., Neal, C.R., Terada, K. & Tanikawa, S. 2006. Petrology and geochemistry of LaPaz Icefield 02205: a new unique low-Ti mare-basalt meteorite. Geochimica et Cosmochimica Acta, 70, 10.1016/j.gca.2005.08.018.Google Scholar
Clayton, R.N. 2003. Oxygen isotopes in meteorites. In Holland, H.D. & Turekian, K.K., eds. Treatise on geochemistry, Vol. 1. Amsterdam: Elsevier, 129142.Google Scholar
Cook, C.P., van De Flierdt, T., Williams, T. et al. 2013. Dynamic behavior of the East Antarctic ice sheet during Pliocene warmth. Nature Geoscience, 6, 10.1038/ngeo1889.Google Scholar
Day, J.M., Taylor, L.A., Floss, C., Patchen, A.D., Schnare, D.W. & Pearson, D.G. 2006. Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica. Geochimica et Cosmochimica Acta, 70, 10.1016/j.gca.2005.11.015.Google Scholar
Elliot, D.H., Fleming, T.H., Haban, M.A. & Siders, M.A. 1995. Petrology and mineralogy of the Kirkpatrick Basalt and Ferrar Dolerite, Mesa Range Region, North Victoria Land, Antarctica. Antarctic Research Series, 67, 103141.Google Scholar
Escutia, C., Brinkhuis, H., Klaus, A. & Expedition 318 Scientists. 2011. Wilkes Land glacial history: Expedition 318 of the riserless drilling platform Wellington, New Zealand, to Hobart, Australia Sites U1355–U1361, 3 January–8 March 2010. Proceedings of the Integrated Ocean Drilling Program, Vol. 318. Tokyo: Integrated Ocean Drilling Program Management International, Inc.Google Scholar
Floss, C., Taylor, L.A., Promprated, P. & Rumble III, D. 2005. Northwest Africa 011: a "eucritic" basalt from a non-eucritic parent body. Meteoritics and Planetary Science, 40, 343360.Google Scholar
Floss, C., Crozaz, G., McKay, G., Mikouchi, T. & Killgore, M. 2003. Petrogenesis of angrites. Geochimica et Cosmochimica Acta, 67, 10.1016/S0016-7037(03)00310-7.Google Scholar
Fretwell, P., Pritchard, H., Vaughan, D. et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 10.5194/tc-7-375-2013.Google Scholar
Gnos, E., Hofmann, B., Franchi, I.A., Al-Kathiri, A., Hauser, M. & Mauser, L. 2002. Sayh al Uhaymir 094: a new Martian meteorite from the Oman desert. Meteoritics & Planetary Science, 37, 835854.Google Scholar
Goodge, J. & Fanning, C. 2010. Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene–Pleistocene glaciomarine sediment and Beacon supergroup sandstones, Antarctica. Geological Society of America Bulletin, 122, 10.1130/B30079.1.Google Scholar
Greenwood, R.C., Franchi, I.A., Jambon, A. & Buchanan, P.C. 2005. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature, 435, 10.1038/nature03612.Google Scholar
Hirokazu, T. 2005. Sadanagaite and fassaite from the contact aureole at the Kiura Kozan area, central Kyushu, Japan. Proceedings of the Institute of Natural Sciences, Nihon University, 40, 107112.Google Scholar
Hutchison, R. 2004. Meteorites: a petrologic, chemical and isotope synthesis. Cambridge: Cambridge University Press, 520 pp.Google Scholar
Ito, M. & Messenger, S. 2008. Isotopic imaging of refractory inclusions in meteorites with the NanoSIMS 50L. Applied Surface Science, 255, 10.1016/j.apsusc.2008.05.095.Google Scholar
Jolliff, B.L., Hughes, J.M., Reeman, F.J.J. & Zeigler, R.A. 2006. Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. American Mineralogist, 91, 10.2138/am.2006.2185.Google Scholar
Keil, K. 2012. Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde-Geochemistry, 72, 10.1016/j.chemer.2012.06.002.Google Scholar
McCubben, M., Shearer, C.K., Burger, P.V., Hauri, E.H., Wang, J., Elardo, S.M. & Papike, J.J. 2014. Volatile abundances of coexisting merrillite and apatite in the Martian meteorite Shergotty: implications for merrillite in hydrous magmas. American Mineralogist, 99, 10.2138/am.2014.4782.Google Scholar
Meyer, C. & Hubbard, N.J. 1970. High potassium and high phosphorous glass as an important rock type in the Apollo 12 soil samples. Meteoritics, 5, 210211.Google Scholar
Misawa, K., Kohno, M., Tomiyama, T., Noguchi, T., Nakamura, T., Nagao, K., Mikouchi, T. & Nishizumi, K. 2010. Two extraterrestrial dust horizons found in the Dome Fuji Ice core, East Antartica. Earth and Planetary Science Letters, 289, 10.1016/j.epsl.2009.11.016.Google Scholar
Mittlefehldt, D.W. & Lindstrom, M.M. 1990. Geochemistry and genesis of the angrites. Geochimica et Cosmochimica Acta, 54, 10.1016/0016-7037(90)90135-8.Google Scholar
Moore, P.B. 1983. Cerite, Re9(Fe3+,Mg)(Si04)6(Si040H)(OH)3: Its crystal structure and relation to whitlockite. American Mineralogist, 68, 9961003.Google Scholar
Nardini, I., Armienti, P., Rocchi, S. & Burgess, R. 2003. 40Ar-39Ar chronology and petrology of the Miocene rift-related volcanism of Daniell Peninsula (Northern Victoria Land, Antarctica). Terra Antarctica, 10, 3962.Google Scholar
Ngounouno, I., Déruelle, B., Demaiffe, D. & Montigny, R. 2003. Petrology of the Cenozoic volcanism in the Upper Benue valley, northern Cameroon (Central Africa). Contributions to Mineralogy and Petrology, 145, 10.1007/s00410-002-0438-6.Google Scholar
Pant, N.C., Biswas, P., Shrivastava, P.K., Bhattacharya, S., Verma, K., Pandey, M. & IODP Expedition 318 Scientific Party 2013. Provenance of Pleistocene sediments from site U1359 of the Wilkes Land IODP Expedition: evidence for multiple sourcing from east Antarctic craton and Ross orogeny. Geological Society of London, Special Publications, 381, 277297.Google Scholar
Papike, J.J. 1998. Comparative planetary mineralogy: chemistry of melt-derived pyroxene, feldspar, and olivine. Reviews in Mineralogy and Geochemistry, 36, 7.17.11.Google Scholar
Patterson, M.O., McKay, R., Naish, T. et al. 2014. Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene. Nature Geoscience, 7, 10.1038/ngeo2273.Google Scholar
Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. & Chenery, S.P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geoanalytical Research, 21, 10.1111/j.1751-908X.1997.tb00538.x.Google Scholar
Perinelli, C., Armienti, P. & Dallai, L. 2011. Thermal evolution of the lithosphere in a rift environment as inferred from the geochemistry of mantle cumulates, northern Victoria Land, Antarctica. Journal of Petrology, 52, 665690.Google Scholar
Seyler, M., Lorand, J.-P. & Gaston, G. 2004. Asthenospheric metasomatism beneath the mid-ocean ridge: evidence from depleted abyssal peridotites. Geology, 32, 10.1130/G20191.1.Google Scholar
Srinivasan, G., Huss, G.R. & Wasserburg, G.J. 2000. A petrographic, chemical and isotopic study of calcium-aluminum-rich inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite. Meteoritics and Planetary Science, 35, 10.1111/j.1945-5100.2000.tb01520.x.Google Scholar
Sun, S. & McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London, Special Publications, 42, 313345.Google Scholar
Tauxe, L., Stickley, C., Sugisaki, S. et al. 2012. Magneto and biostratigraphic constraints for the paleoceanographic record of the Wilkes Land Margin cores: IODP Expedition 318. Paleoceanography, 27, 2214.Google Scholar
Xie, X., Yang, H., Gu, X. & Downs, R.T. 2015. Chemical composition and crystal structure of merrillite from the Suizhou meteorite. American Mineralogist, 100, 27532756.Google Scholar
Xie, X., Zhai, S., Chen, M. & Yang, H. 2013. Tuite, γ-Ca3(PO4)2, formed by chlorapatite decomposition in a shock vein of the Suizhou L6 chondrite. Meteoritics and Planetary Science, 48, 10.1111/maps.12143.Google Scholar
Xie, X., Minitti, M.E., Chen, M., Mao, H.K., Wang, D., Shu, J. & Fei, Y. 2002. Natural high-pressure polymorph of merrillite in the shock vein of the Suizhou meteorite. Geochimica et Cosmoschimica Acta, 66, 10.1016/S0016-7037(02)00833-5.Google Scholar
Yanai, K. 1994. Angrite Asuka-881371: preliminary examination of a unique meteorite in the Japanese collection of Antarctic meteorites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 7, 3041.Google Scholar
Zeigler, R.A., Korotev, R.L., Jolliff, B.L. & Haskin, L.A. 2005. Petrology and geochemistry of the La Paz Ice field basaltic lunar meteorite and source-crater pairing with Northwest Africa 032. Meteoritics and Planetary Science, 40, 10.1111/j.1945-5100.2005.tb00174.x.Google Scholar