Skip to main content Accessibility help

Parasites in Antarctic krill guts inferred from DNA sequences

  • Alison C. Cleary (a1), Maria C. Casas (a1), Edward G. Durbin (a1) and Jaime Gómez-Gutiérrez (a2)


The keystone role of Antarctic krill, Euphausia superba Dana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170 E. superba guts in a small area along the West Antarctic Peninsula. These parasites included Metschnikowia spp. fungi, Haptoglossa sp. peronosporomycetes, Lankesteria and Paralecudina spp. apicomplexa, Stegophorus sp. nematodes, and Pseudocollinia spp. ciliates. Of these parasites, Metschnikowia spp. fungi and Pseudocollinia spp. ciliates had previously been observed in E. superba, as had other genera of apicomplexans, though not Lankesteria and Paralecudina. In contrast, nematodes had previously only been observed in eggs of E. superba, and there are no literature reports of peronosporomycetes in euphausiids. Pseudocollinia spp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged in E. superba ecology and population dynamics.


Corresponding author


Hide All

Present address Norwegian Polar Institute



Hide All
Altschul, S.F., Gih, W., Miller, W., Myers, E.W. & Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403410.
Cleary, A.C. & Durbin, E.G. 2016. Unexpected prevalence of parasite 18S rDNA sequences in winter among Antarctic marine protists. Journal of Plankton Research, 38, 401417.
Cleary, A.C., Durbin, E.G. & Casas, M.C. 2018. Feeding by Antarctic krill, Euphausia superba, in the West Antarctic Peninsula: differences between fjords and open waters. Marine Ecology Progress Series, 595, 10.3354/meps12568.
Diaz, J.I., Fusaro, B., Longarzo, L., Coria, N.R., Vidal, V., D'Amico, V., et al . 2016. Gastrointestinal helminths of Adélie penguins (Pygoscelis adeliae) from Antarctica. Polar Research, 35, 10.3402/polar.v35.28516.
Donachie, S.P. & Zdanowski, M.K. 1998. Potential digestive function of bacteria in krill Euphausia superba stomach. Aquatic Microbial Ecology, 14, 129136.
Eren, A.M., Morrison, H.G., Lescaut, P.J., Reveillaud, J., Vineis, J.H. & Sogin, M.L. 2015. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. The ISME Journal, 9, 968979.
Gómez-Gutiérrez, J. & Kawaguchi, S. 2017. Review: Pseudocollinia histophagous ciliates that infect krill in the Pacific and Atlantic oceans and possibly worldwide. CICIMAR Oceánides, 32, 1524.
Gómez-Gutiérrez, J., Kawaguchi, S., Morales-Ávila, J.R. 2017. Bacteria. In Gómez-Gutiérrez, J., Kawaguchi, S. & Morales-Ávilaeds, J.R., eds. Global diversity and ecological function of parasites of euphausiids. Cham: Springer, 214 pp.
Gómez-Gutiérrez, J., López-Cortez, A., Aguilar-Méndez, M.J., Del Angel-Rodríguez, J., Tremblay, N., Zenteno-Savín, T., et al . 2015. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex: I. Transmission process. Diseases of Aquatic Organisms, 16, 10.3354/dao02922.
Gómez-Gutiérrez, J. & Morales-Ávila, J.R. 2016. Parasites and diseases. In Siegel, V., ed. Biology and ecology of Antarctic krill. Cham: Springer, 441 pp. 10.1007/978-3-319-29279-3_10.
Gómez-Gutiérrez, J., Peterson, W.T., De Roberetis, A. & Brodeur, R.D. 2003. Mass mortality of krill caused by parasitoid ciliates. Science, 301, 339.
Gomez-Gutierrez, J., Strüder-Kypke, M.C., Lynn, D.H., Shaw, T.C., Aguilar-Méndez, M.J., López-Cortés, A. et al. 2012. Pseudocollinia brintoni gen. nov., sp. nov.(Apostomatida: Colliniidae), a parasitoid ciliate infecting the euphausiid Nyctiphanes simplex . Diseases of Aquatic Organisms, 99, 5778.
Hakariya, M., Hirose, D. & Tokumasa, S. 2009. Molecular phylogeny of terrestrial holocarpic endoparasititc peronosporomycetes, Haptoglossa spp., inferred from 18S rDNA. Mycoscience, 50, 130136.
Hamner, W.M. 1984. Aspects of schooling of Euphausia superba . Journal of Crustacean Biology, 4, 6774.
Iritani, D., Wakeman, K.C. & Leander, B.S. 2018. Molecular phylogenetic positions of two new marine gregarines (Apicomplexa)—Paralecudina anankea n. sp. and Lecudina caspera n. sp. from the intestine of Lumbrineris inflata (Polychaeta) show patterns of coevolution. Journal of Eukaryotic Microbiology, 65, 211219.
Kuris, A.M., Hechinger, R.F., Shaw, J.C., Whitney, K.L., Aguirre-Macedo, L., Boch, C.A., et al. 2008. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature, 454, 515518.
Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., et al. 2015. Determinants of community structure in the global plankton interactome. Science, 348, 10.1126/science.1262073.
Lynn, D.H., Gómez-Gutiérrez, J., Strűder-Kypke, M.C. & Shaw, C.T. 2014. Ciliate species diversity and host-parasitoid codiversification in Pseudocollinia infecting krill, with description of Pseudocollinia similis sp. nov. Diseases of Aquatic Organisms, 112, 89102.
Mauchline, J. 1980. Measurements of body length of Euphausia superba Dana. BIOMASS Handbook No. 4, 9 pp.
Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T.L., Agarwala, R. & Schäffer, A.A. 2008. Database indexing for production MegaBLAST searches. Bioinformatics, 24, 17571764.
Nicol, S. & Foster, J. 2016. The fishery for Antarctic krill: its current status and management regime. In Siegel, V., ed. Biology and ecology of Antarctic krill. Cham: Springer, 441 pp. 10.1007/978-3-319-29279-3_11.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590D596.
Quetin, L.G. & Ross, R.M. 1991. Behavioural and physiological characteristics of the Antarctic krill, Euphausia superba . American Zoology, 31, 4963.
Rueckert, S. & Leander, B.S. 2008. Morphology and phylogenetic position of two novel marine gregarines (Apicomplexa, Eugregarinorida) from the intestines of North-eastern Pacific ascidians. Zoologica Scripta, 37, 637645.
Sameoto, D., Cochrane, N. & Herman, A. 1993. Convergence of acoustic, optical, and net-catch estimates of euphausiid abundance: use of artificial light to reduce net avoidance. Canadian Journal of Fisheries and Aquatic Sciences, 50, 334346.
Searle, C.L., Ochs, J.H., Cáceres, C.E., Chiang, S.L., Gerardo, N.M., Hall, S.R., et al . 2015. Plasticity, not genetic variation, drives infection success of a fungal parasite. Parasitology, 142, 839848.
Sokolova, M.N. 1994. Euphausiid ''dead body rain'' as a source of food for abyssal benthos. Deep-Sea Research I, 4, 741746.
Stankovic, A.M. & Rakusa-Suszczewski, S. 1996. Parasitic protozoa on appendages and inside the body of Euphausia superba Dana. Polish Polar Research, 17, 169171.
Suh, H.L. & Nemoto, T. 1988. Morphology of the gastric mill in ten species of euphausiids. Marine Biology, 97, 7985.
Takahashi, T.K., Kawaguchi, S., Kobayashi, M. & Toda, T. 2003. Parasitid eugregarines change their spatial distribution within the host digestive tract of Antarctic krill, Euphausia superba. Polar Biology, 26, 468473.
Takahashi, T.K., Kawaguchi, S., Kobayashi, M., Toda, T., Tanimura, A., Fukuchi, M., et al. 2011, Eugregarine infection within the digestive tract of larval Antarctic krill, Euphausia superba. Polar Biology, 34, 11671174.
Vidal, V., Ortiz, J., Diaz, J.I., Zafrilla, B., Bonete, M.J., De Ybanez, M.R., et al . 2016. Morphological, molecular and phylogenetic analyses of the spirurid nematode Stegophorus macronectes (Johnston & Mawson, 1942). Journal of Helminthology, 90, 214222.
Wallis, J.R., Smith, A.J.R. & Kawaguchi, S. 2017. Discovery of gregarine parasitism in some Southern Ocean krill (Euphausiacea) and the salp Salpa thompsoni . Polar Biology, 40, 19121917.
Wiebe, P.H., Ashijian, C.J., Gallager, S.M., Davis, C.S., Lawson, G.L. & Copley, N.L. 2004. Using a high-powered strobe light to increase the catch of Antarctic krill. Marine Biology, 144, 493502.
Wiebe, P.H., Morton, A.W., Bradley, A.M., Backus, A.M., Craddock, J.E., Barber, V., et al. 1985. New development in the MOCNESS, an apparatus for sampling zooplankton and micronekton. Marine Biology, 87, 313323.


Parasites in Antarctic krill guts inferred from DNA sequences

  • Alison C. Cleary (a1), Maria C. Casas (a1), Edward G. Durbin (a1) and Jaime Gómez-Gutiérrez (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed