Skip to main content Accessibility help

The effects of snow and salt on ice table stability in University Valley, Antarctica

  • K.E. Williams (a1) (a2), J.L. Heldmann (a3), Christopher P. McKay (a3) and Michael T. Mellon (a4)


The Antarctic Dry Valleys represent a unique environment where it is possible to study dry permafrost overlaying an ice-rich permafrost. In this paper, two opposing mechanisms for ice table stability in University Valley are addressed: i) diffusive recharge via thin seasonal snow deposits and ii) desiccation via salt deposits in the upper soil column. A high-resolution time-marching soil and snow model was constructed and applied to University Valley, driven by meteorological station atmospheric measurements. It was found that periodic thin surficial snow deposits (observed in University Valley) are capable of drastically slowing (if not completely eliminating) the underlying ice table ablation. The effects of NaCl, CaCl2 and perchlorate deposits were then modelled. Unlike the snow cover, however, the presence of salt in the soil surface (but no periodic snow) results in a slight increase in the ice table recession rate, due to the hygroscopic effects of salt sequestering vapour from the ice table below. Near-surface pore ice frequently forms when large amounts of salt are present in the soil due to the suppression of the saturation vapour pressure. Implications for Mars high latitudes are discussed.


Corresponding author


Hide All
Bockheim, J.G. 1982. Properties of a chronosequence of ultraxerous soils in the Transantarctic Mountains. Geoderma, 28, 239255.
Bockheim, J.G., Campbell, I.B. & McLeod, M. 2007. Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 18, 217227.
Bonan, G. 1996. A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR technical note NCAR/TN-417+STR. Available at:
Campbell, G.S. & Norman, J.M. 1998. An introduction to environmental biophysics. New York, NY: Springer, 286 pp.
Campbell, I.B. & Claridge, G.G.C. 2006. Permafrost properties, patterns and processes in the transantarctic mountain region. Permafrost and Periglacial Processes, 17, 215232.
Campbell, I.B., Claridge, G.G.C., Campbell, D.I. & Balks, M.R. 1998. The soil environment of the McMurdo Dry Valleys, Antarctica, in eco-system dynamics in a polar desert: the McMurdo Dry Valleys. Antarctic Research Series, 72, 297322.
Cardarelli, F. 2008. Materials handbook: a concise desktop reference. Dordrecht: Springer, 1339 pp.
Chamberlain, M.A. & Boynton, W.V. 2007. Response of Martian ground ice to orbit-induced climate change. Journal of Geophysical Research - Planets, 112, 10.1029/2006JE002801.
Claridge, G.G.C. & Campbell, I.B. 1977. Salts in the Antarctic soils, their distribution and relationship to soil processes. Soil Science, 123, 377384.
Farmer, G.T. & Cook, J. 2013. Climate change science: a modern synthesis. Volume 1 – The physical climate. Dordrecht: Springer, 564 pp.
Fisher, D.A., Lacelle, D., Pollard, W., Davila, A. & McKay, C.P. 2016. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica. Journal of Geophysical Research - Earth Surface, 121, 10.1002/2016JF004054.
Gilichinsky, D.A., Wilson, G.S., Friedmann, E.I., McKay, C.P., Sletten, R.S., Rivkina, E.M., Vishnivetskaya, T.A., Erokhina, L.G., Ivanushkina, N.E., Kochkina, G.A., Shcherbakova, V.A., Soina, V.S., Spirina, E.V., Vorobyova, E.A., Fyodorov-Davydov, D.G., Hallet, B., Ozerskaya, S.M., Sorokovikov, V.A., Laurinavichyus, K.S., Shatilovich, A.V., Chanton, J.P., Ostroumov, V.E. & Tiedje, J.M. 2007. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology, 7, 275311.
Hagedorn, B., Sletten, R.S. & Hallet, B. 2007. Sublimation and ice condensation in hyperarid soils: modeling the results using field data from Victoria Valley, Antarctica. Journal of Geophysical Research - Earth Surface, 112, 10.1029/2006JF000580.
Hall, W.D. & Pruppacher, H.R. 1976. Survival of ice particles falling from cirrus clouds in subsaturated air. Journal of Atmospheric Sciences, 33, 19952006.
Hindmarsh, R.C.A., van der Wateren, F.M. & Verbers, A.L.L.M. 1998. Sublimation of ice through sediment in Beacon Valley, Antarctica. Geografiska Annaler - Physical Geography, 80A, 209219.
Jacobson, M.Z. 1998. Fundamentals of atmospheric modelling. Cambridge: Cambridge University Press, 672 pp.
Jordan, R.E., Albert, M.R. & Brun, E. 2008. Physical processes within the snow cover and their parameterization. In Armstrong, R.L. & Brun, E., ed. Snow and climate: physical processes, surface energy exchange and modeling. Cambridge: Cambridge University Press, 256 pp.
Jordan, R.E., Andreas, E.L. & Makshtas, A.P. 1999. Heat budget of snow-covered sea ice at North Pole 4. Journal of Geophysical Research - Oceans, 104, 77857806.
Kounaves, S.P., Stroble, S.T., Anderson, R.M., Moore, Q., Catling, D.C., Douglas, S., McKay, C.P., Ming, D.W., Smith, P.H., Tamppari, L.K. & Zent, A.P. 2010. Discovery of natural perchlorate in the Antarctic dry valleys and its global implications. Environmental Science & Technology, 44, 10.1021/es9033606.
Kowalewski, D.E., Marchant, D.R., Head, J.W. & Jackson, D.W. 2012. A 2D model for characterizing first-order variability in sublimation of buried glacier ice, Antarctica: assessing the influence of polygon troughs, desert pavements and shallow-subsurface salts. Permafrost and Periglacial Processes, 23, 10.1002/ppp.731.
Kowalewski, D.E., Marchant, D.R., Levy, J.S. & Head, J.W. 2006. Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley, Antarctica. Antarctic Science, 18, 421428.
Lacelle, D., Davila, A.F., Pollard, W.H., Andersen, D., Heldmann, J., Marinova, M. & McKay, C.P. 2011. Stability of massive ground ice bodies in University Valley, McMurdo Dry Valleys of Antarctica: using stable isotope O-H isotopes as tracers of sublimation in hyper-arid regions. Earth and Planetary Science Letters, 301, 403411.
Lacelle, D., Davila, A.F., Fisher, D., Pollard, W.H., DeWitt, R., Heldmann, J., Marinova, M.M. & McKay, C.P. 2013. Excess ground ice of condensation-diffusion origin in University Valley, Dry Valleys of Antarctica: evidence from isotope geochemistry and numerical modeling. Geochimica et Cosmochimica Acta, 120, 280297.
Lancaster, N. 2004. Relations between aerodynamic and surface roughness in a hyper-arid cold desert: McMurdo Dry Valleys, Antarctica. Earth Surface Processes and Landforms, 29, 853867.
LaPalme, C., Lacelle, D., Pollard, W., Fisher, D., Davila, A. & McKay, C.P. 2017. Distribution and origin of ground ice in University Valley, McMurdo Dry Valleys, Antarctica. Antarctic Science, 29, 10.1017/S0954102016000572.
Liu, L., Sletten, R.S., Hagedorn, B., Hallet, B., McKay, C.P. & Stone, J.O. 2015. An enhanced model of the contemporary and long-term (200 ka) sublimation of the massive subsurface ice in Beacon Valley, Antarctica. Journal of Geophysical Research - Earth Surface, 120, 10.1002/2014JF003415.
Marinova, M.M., McKay, C.P., Pollard, W.H., Heldmann, J.L., Davila, A.F., Andersen, D.T., Jackson, W.A., Lacelle, D., Paulson, G. & Zacny, K. 2013. Distribution of depth to ice-cemented soils in the high-elevation Quartermain Mountains, McMurdo Dry Valleys, Antarctica. Antarctic Science, 25, 575582.
McKay, C.P. 2009. Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarctic Science, 21, 8994.
McKay, C.P., Mellon, M.T. & Friedmann, E.I. 1998. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 3138.
Mellon, M.T. & Jakosky, B.M. 1993. Geographic variations in the thermal and diffusive stability of ground ice on Mars. Journal of Geophysical Research - Planets, 98, 33453364.
Mellon, M.T. & Phillips, R.J. 2001. Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research - Planets, 106, 23 16523 179.
Mellon, M.T., Feldman, W.C. & Prettyman, T. H. 2004. The presence and stability of ground ice in the Southern Hemisphere of Mars. Icarus, 169, 324340.
Mellon, M.T., McKay, C.P. & Heldmann, J.L. 2014. Polygonal ground in the McMurdo Dry Valleys of Antarctica and its relationship to ice table depth and the recent Antarctic climate history. Antarctic Science, 26, 413426.
Mellon, M.T., Arvidson, R.E., Sizemore, H.G., Searls, M.L., Blaney, D.L., Cull, S., Hecht, M.H., Heet, T.L., Keller, H.U., Lemmon, M.T., Markiewicz, W.J., Ming, D.W., Morris, R.V., Pike, W.T. & Zent, A.P. 2009. Ground ice at the Phoenix landing site: stability state and origin. Journal of Geophysical Research - Planets, 114, 10.1029/2009JE003417.
Mira, M., Valor, E., Boluda, R., Caselles, V. & Coll, C. 2007. Influence of soil water content on the thermal infrared emissivity of bare soils: implication for land surface temperature determination. Journal of Geophysical Research - Earth Surface, 112, 10.1029/2007JF000749.
Ng, F., Hallet, B., Sletten, R.S. & Stone, J.O. 2005. Fast-growing till over ancient ice in Beacon Valley, Antarctica. Geology, 33, 10.1130/G21064.1.
Nuding, D.L., Rivera-Valentin, E.G., Davis, R.D., Gough, R.V., Chevrier, V.F. & Tolbert, M.A. 2014. Deliquescence and efflorescence of calcium perchlorate: an investigation of stable aqueous solutions relevant to Mars. Icarus, 243, 420428.
Schörghofer, N. 2005. A physical mechanism for long-term survival of ground ice in Beacon Valley, Antarctica. Geophysical Research Letters, 32, 10.1029/2005GL023881.
Smith, P.H., Tamppari, L.K., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W.V., Carswell, A., Catling, D.C., Clark, B.C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, H.P., Hecht, M.H., Hipkin, V., Hoffman, J., Hviid, S.F., Keller, H.U., Kounaves, S.P., Lange, C.F., Lemmon, M.T., Madsen, M.B., Markiewicz, W.J., Marshall, J., McKay, C.P., Mellon, M.T., Ming, D.W., Morris, R.V., Pike, W.T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J. & Zent, A.P. 2009. H2O at the Phoenix landing site. Science, 325, 5861.
Sugden, D.E., Marchant, D.R., Potter, N., Souchez, R.A., Denton, G.H., Swisher, C.C. & Tison, J.L. 1995. Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412414.
Svitek, T. & Murray, B. 1990. Winter frosts at the Viking Lander 2 site. Journal of Geophysical Research - Solid Earth and Planets, 95, 14951510.
Tamppari, L.K., Anderson, R.M., Archer, P.D., Douglas, S., Kounaves, S.P., McKay, C.P., Ming, D.W., Moore, Q., Quinn, J.E., Smith, P.H., Stroble, S. & Zent, A.P. 2012. Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site. Antarctic Science, 24, 211228.
Ulrich, R. 2009. Modeling diffusion advection in the mass transfer of water vapor through Martian regolith. Icarus, 201, 127134.
Williams, K.E., McKay, C.P. & Heldmann, J.L. 2015. Modeling the effects of Martian surface frost on ice table depth. Icarus, 261, 5865.


Related content

Powered by UNSILO

The effects of snow and salt on ice table stability in University Valley, Antarctica

  • K.E. Williams (a1) (a2), J.L. Heldmann (a3), Christopher P. McKay (a3) and Michael T. Mellon (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.