Skip to main content Accessibility help

Arctic and Antarctic four-month oscillations detected from Advanced Microwave Sounding Unit-A measurements

  • Z. Qin (a1), X. Zou (a1) (a2) and F. Weng (a3)


Satellite microwave measurements can penetrate through clouds and therefore provide unique information of surface and near-surface temperatures and surface emissivity. In this study, the brightness temperatures from NOAA-15 Advanced Microwave Sounding Unit-A (AMSU-A) are used to analyse the surface temperature variation in the Arctic and Antarctic regions during the past 13 years from 1998–2010. The data from four AMSU-A channels sensitive to surface are analysed with wavelet and Fourier spectrum techniques. A very pronounced maximum is noticed in the period range centred around four months. Application of a statistical significance test confirms that it is a dominant mode of variability over polar regions besides the annual and semi-annual oscillations in the data. No evidence of this feature could be found in middle and low latitudes. The four-month oscillation is 90° out of phase at the Arctic and Antarctic, with the Arctic four-month oscillation reaching its maximum in the beginning of March, July and November and the Antarctic four-month oscillation in the middle of April, August and December. The intensity of the four-month oscillation varies interannually. The years with pronounced four-month oscillation were 2002–03, 2005–06 and 2008–09. The strongest year for the Arctic and Antarctic four-month oscillations occurred in 2005–06 and 2008–09, respectively. The sign of four-month oscillation is also found in the surface skin temperatures and two-metre air temperatures from ERA-Interim reanalysis, with strongest signal in 2005–06 when this oscillation is strongest in the data. It is hypothesized that the Arctic and Antarctic four-month oscillations are a combined result of unique features of solar radiative forcing and snow/sea ice formation and metamorphosis.


Corresponding author


Hide All
Agudelo, P.A.Curry, J.A. 2004. Analysis of spatial distribution in tropospheric temperature trends. Geophysical Research Letters , 10.1029/ 2004GL020818.
Cai, M. 2006. Dynamical greenhouse-plus feedback and polar warming amplification. Part I. A dry radiative-transportive climate model. Climate Dynamics, 29, 375391.
Chelliah, M.Bell, G.D. 2004. Tropical multidecadal and interannual climate variability in the NCEP–NCAR reanalysis. Journal of Climate, 17, 17771803.
Christy, J.R., Spencer, R.W.Braswell, W.D. 2000. MSU tropospheric temperatures: dataset construction and radiosonde comparisons. Journal of Atmospheric and Oceanic Technology, 17, 11531170.
Christy, J.R., Spencer, R.W.Lobel, E.S. 1998. Analysis of the merging procedure for the MSU daily temperature time series. Journal of Climate, 11, 20162041.
Christy, J.R., Spencer, R.W., Norris, W.B., Braswell, W.D.Parker, D.E. 2003. Error estimates of version 5.0 of MSU–AMSU bulk atmospheric temperature. Journal of Atmospheric and Oceanic Technology, 20, 613629.
Frauenfeld, O.W., Zhang, T.Serreze, M.C. 2005. Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. Journal of Geophysical Research , 10.1029/2004JD005230.
Goodrum, G., Kidwell, K.Winston, W. 2009. NOAA KLM user's guide with NOAA-N, -N-Prime supplement.
Izaguirre, C., Mendez, F.J., Menendez, M.Losada, I.J. 2010. Global extreme wave height variability based on satellite data. Geophysical Research Letters , 10.1029/2011GL047302.
Johannessen, O.M., Miles, M.W.Bjorgo, E. 1995. The Arctic's shrinking sea ice. Nature, 376, 126127.
Johannessen, O.M., Shalina, E.V.Miles, M.W. 1999. Satellite evidence for an Arctic sea ice coverage in transformation. Science, 286, 18371939.
Mears, C.A.Wentz, F.J. 2009. Construction of the Remote Sensing Systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. Journal of Atmospheric and Oceanic Technology, 26, 10401056.
Mears, C.A., Schabel, M.C.Wentz, F.J. 2003. A reanalysis of the MSU channel 2 tropospheric temperature record. Journal of Climate, 16, 36503664.
Mo, T. 1999. AMSU-A antenna pattern corrections. IEEE Transactions on Geoscience and Remote Sensing, 37, 103112.
Rikiishi, K. 1976. Methods of computing the power spectrum for equally spaced time series of finite length. Journal of Applied Meteorology and Climatology, 15, 11021110.
Schneider, D.P., Steig, E.J.Comiso, J.C. 2004. Recent climate variability in Antarctica from satellite derived temperature data. Journal of Climate, 17, 15691583.
Simmons, A., Uppala, S., Dee, D.Kobayashi, S. 2007. ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110, 2535.
Torrence, C.Compo, G.P. 1998. A practical guide to wavelet analysis. Bulletin of American Meteorological Society, 79, 6178.
Vinnikov, K.Y.Grody, N.C. 2003. Global warming trend of mean tropospheric temperature observed by satellites. Science, 302, 269272.
Zou, C.-Z., Gao, M.Goldberg, M. 2009. Error structure and atmospheric temperature trend in observations from the Microwave Sounding Unit. Journal of Climate, 22, 16611681.


Arctic and Antarctic four-month oscillations detected from Advanced Microwave Sounding Unit-A measurements

  • Z. Qin (a1), X. Zou (a1) (a2) and F. Weng (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed