Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T19:47:31.931Z Has data issue: false hasContentIssue false

Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site

Published online by Cambridge University Press:  04 January 2012

L.K. Tamppari*
Affiliation:
Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
R.M. Anderson
Affiliation:
Tufts University, Medford, MA, USA
P.D. Archer JR
Affiliation:
NASA Johnson Space Center, Houston, TX, USA
S. Douglas
Affiliation:
Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
S.P. Kounaves
Affiliation:
Tufts University, Medford, MA, USA
C.P. Mckay
Affiliation:
NASA Ames Research Center, Moffett Field, CA, USA
D.W. Ming
Affiliation:
NASA Johnson Space Center, Houston, TX, USA
Q. Moore
Affiliation:
Tufts University, Medford, MA, USA
J.E. Quinn
Affiliation:
Jacobs Engineering, ESCG/NASA, Houston, TX, USA
P.H. Smith
Affiliation:
University of Arizona, Tucson, AZ, USA
S. Stroble
Affiliation:
Tufts University, Medford, MA, USA
A.P. Zent
Affiliation:
NASA Ames Research Center, Moffett Field, CA, USA

Abstract

The McMurdo Dry Valleys are among the driest, coldest environments on Earth and are excellent analogues for the Martian northern plains. In preparation for the 2008 Phoenix Mars mission, we conducted an interdisciplinary investigation comparing the biological, mineralogical, chemical, and physical properties of wetter lower Taylor Valley (TV) soils to colder, drier University Valley (UV) soils. Our analyses were performed for each horizon from the surface to the ice table. In TV, clay-sized particle distribution and less abundant soluble salts both suggested vertical and possible horizontal transport by water, and microbial biomass was higher. Alteration of mica to short-order phyllosilicates suggested aqueous weathering. In UV, salts, clay-sized materials, and biomass were more abundant near the surface, suggesting minimal downward translocation by water. The presence of microorganisms in each horizon was established for the first time in an ultraxerous zone. Higher biomass numbers were seen near the surface and ice table, perhaps representing locally more clement environments. Currently, water activity is too low to support metabolism at the Phoenix site, but obliquity changes may produce higher temperatures and sufficient water activity to permit microbial growth, if the populations could survive long dormancy periods (∼106 years).

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aislabie, J.M., Jordan, S.Barker, G.M. 2008. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma, 144, 920.CrossRefGoogle Scholar
Anderson, D.M.Tice, A.R. 1972. Predicting unfrozen water contents in frozen soils from surface area measurements. Highway Research Record, 393, 1218.Google Scholar
Astromaterials Research Office. 2006. Astromaterials curation facility cleaning procedures for contamination control. Doc. JSC-03243, Rev. D. Houston, TX: NASA Johnson Space Center.Google Scholar
Balkwill, D.L., Leach, F.R., Wilson, J.T., McNabb, J.F.White, D.C. 1988. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microbial Ecology, 16, 7384.CrossRefGoogle ScholarPubMed
Bao, H.Marchant, D.R. 2006. Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 111, 10.1029/2005JD006669.CrossRefGoogle Scholar
Bockheim, J.G. 1997. Properties and classifications of cold desert soils from Antarctica. Soil Science Society of America Journal, 61, 224231.CrossRefGoogle Scholar
Campbell, I.B.Claridge, G.G.C. 1982. The influence of moisture on the development of soils of the cold deserts of Antarctica. Geoderma, 28, 221238.CrossRefGoogle Scholar
Campbell, D.I., MacCulloch, R.J.L.Campbell, I.B. 1997. Thermal regimes of some soils in the McMurdo Sound region. In Lyons, W.B., Howard-Williams, C.&Hawes, I., eds. Antarctica, ecosystem processes in Antarctic ice-free landscapes. Rotterdam: Balkema, 4555.Google Scholar
Claridge, G.G.C.Campbell, I.B. 1977. The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Science, 123, 377384.CrossRefGoogle Scholar
Coates, J.D.Achenbach, L.A. 2004. Microbial perchlorate reduction: rocket-fuelled metabolism. Nature Reviews Microbiology, 2, 569580.CrossRefGoogle ScholarPubMed
Cowan, D.A., Russell, N.J., Mamais, A.Sheppard, D.M. 2002. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles, 6, 431436.CrossRefGoogle ScholarPubMed
De Vries, D.A. 1952. A nonstationary method for determining thermal conductivity of soil in situ. Soil Science, 73, 8389.CrossRefGoogle Scholar
Doran, P.T., Priscu, J.C., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorhead, D.L., Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C.H., McKay, C.P.Parsons, A.N. 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517520.CrossRefGoogle ScholarPubMed
Flynn, G.J. 1996. The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth, Moon, and Planets, 72, 469474.CrossRefGoogle Scholar
Fountain, A.G., Nylen, T.H., Monaghan, A., Basagic, H.J.Bromwich, D. 2010. Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 30, 633642.CrossRefGoogle Scholar
Friedmann, E.I. 1982. Endolithic microorganisms in the Antarctic cold desert. Science, 215, 10451053.CrossRefGoogle ScholarPubMed
Gal, H., Ronen, Z., Weisbrod, N., Dahan, O.Nativ, R. 2008. Perchlorate degradation in contaminated soils and the deep unsaturated zone. Soil Biology & Biochemistry, 40, 17511757.CrossRefGoogle Scholar
Grant, W.D. 2004. Life at low water activity. Philosophical Transactions of the Royal Society London, B359, 12491267.CrossRefGoogle Scholar
Hall, B.L.Denton, G.H. 2000. Radiocarbon chronology of Ross Sea Drift, eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the last glacial maximum. Geografiska Annaler, A82, 305336.CrossRefGoogle Scholar
Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J., Deflores, L.P., Gospodinova, K., Kapit, J.Smith, P.H. 2009. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science, 325, 6569.CrossRefGoogle ScholarPubMed
Heldmann, J.L., McKay, C.P., Pollard, W.H., Andersen, D.T.Toon, O.B. 2005. Annual development cycle of an icing deposit and associated perennial spring activity on Axel Heiberg Island, Canadian High Arctic. Arctic, Antarctic, and Alpine Research, 37, 127135.CrossRefGoogle Scholar
Jackson, M.L. 1985. Soil chemical analysis - advanced course, 2nd ed. Madison, WI: University of Wisconsin, 930 pp.Google Scholar
Kounaves, S.P., Hecht, M.H., West, S.J., Morookian, J., Young, S., Quinn, R., Grunthaner, P., Wen, X., Weilert, M., Cable, C.A., Fisher, A., Gospodinova, K., Kapit, J., Stroble, S., Hsu, P., Clark, B.C., Ming, D.W.Smith, P.H. 2009. The MECA wet chemistry laboratory on the 2007 Phoenix Mars Scout lander. Journal of Geophysical Research, 114, E00A19.CrossRefGoogle Scholar
Kounaves, S.P., Stroble, S.T., Anderson, R.M., Moore, Q., Catling, D.C., Douglas, S., Mckay, C.P., Ming, D.W., Smith, P.H., Tamppari, L.K.Zent, A.P. 2010a. Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environmental Science & Technology, 44, 23602364.CrossRefGoogle ScholarPubMed
Kounaves, S.P., Hecht, M.H., Kapit, J., Gospodinova, K., Deflores, L., Quinn, R., Boynton, W.V., Clark, B.C., Catling, D.C., Hredzak, P., Ming, D.W., Moore, Q., Shusterman, J., Stroble, S., West, S.J.Young, S.M.M. 2010b. The wet chemistry experiments on the 2007 Phoenix Mars Scout lander mission: data analysis and results. Journal of Geophysical Research, 115, 10.1029/2009JE003424.CrossRefGoogle Scholar
Linkletter, G., Bockheim, J.Ugolini, F.C. 1973. Soils and glacial deposits in the Beacon Valley, southern Victoria Land, Antarctica, New Zealand. Journal of Geology and Geophysics, 16, 90108.CrossRefGoogle Scholar
MacLean, L.C.W., Tyliszczak, T., Gilbert, P.U.P.A., Zhou, D., Pray, T.J., Onstott, T.C.Southam, G. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology, 6, 471480.CrossRefGoogle ScholarPubMed
Mahaney, W.C., Dohm, J.M., Baker, V.R., Newsom, H.E., Malloch, D.V., Hancock, R.G.V., Campbell, I., Sheppard, D.Milner, M.W. 2001. Morphogenesis of Antarctic paleosols: Martian analogue. Icarus, 154, 113130.CrossRefGoogle Scholar
Marchant, D.R.Head, J.W. III 2007. Antarctic Dry Valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192, 187222.CrossRefGoogle Scholar
Marinova, M.M., McKay, C.P., Heldmann, J.L., Davila, A.F., Andersen, D.T., Jackson, W.A., Lacele, D., Paulson, G., Pollard, W.H.Zacny, K. 2011. Sublimation-dominated active layers in the highlands of the Antarctic Dry Valleys and implications for other sites. Lunar and Planetary Science Conference, Abstract 2644, 2 pp. (available at http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2644.pdf)Google Scholar
McKay, C.P. 2009. Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarctic Science, 21, 8994.CrossRefGoogle Scholar
McKay, C.P., Mellon, M.T.Friedmann, E.I. 1998. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 3138.CrossRefGoogle ScholarPubMed
Mellon, M.T., Arvidson, R.E., Sizemore, H.G., Searls, M.L., Blaney, D.L., Cull, S., Hecht, M.H., Heet, T.L., Keller, H.U., Lemmon, M.T., Markiewicz, W.J., Ming, D.W., Morris, R.V., Pike, W.T.Zent, A.P. 2009. Ground ice at the Phoenix landing site: stability state and origin. Journal of Geophysical Research, 114, 10.1029/2009JE00341.CrossRefGoogle Scholar
Michalski, G., Bockheim, J.G., Kendall, C.Thiemens, M. 2005. Isotopic composition of Antarctic Dry Valley nitrate: implications for NOx sources and cycling in Antarctica. Geophysical Research Letters, 32, L13817.CrossRefGoogle Scholar
Miller, J.P.Logan, B.E. 2000. Sustained perchlorate degradation in an autotrophic, gas-phase, packed-bed reactor. Environmental Science & Technology, 34, 30183022.CrossRefGoogle Scholar
Navarro-González, R., Vargas, E., De La Rosa, J., Raga, A.C.McKay, C.P. 2010. Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars. Journal of Geophysical Research, 115, 10.1029/2010JE003599.CrossRefGoogle Scholar
Nienow, J.A.Friedmann, E.I. 1993. Terrestrial lithophytic (rock) communities. In Friedmann, E.I., ed. Antarctic microbiology. New York: Wiley-Liss, 343412.Google Scholar
Pollard, W.H., Omelon, C., Andersen, D.T.McKay, C.P. 1999. Perennial spring occurrence in the Expedition Fiord area of western Axel Heiberg Island, Canadian High Arctic. Canadian Journal of Earth Sciences, 36, 116.CrossRefGoogle Scholar
Powers, J.G., Monaghan, A.J., Cayette, A.M., Bromwich, D.H., Kuo, Y.Manning, K.W. 2003. Real time mesoscle modeling over Antarctica: the Antarctic mesoscale prediction system. Bulletin of the American Meteorological Society, 84, 15331545.CrossRefGoogle Scholar
Rempel, A.W., Wettlaufer, J.S.Worster, M.G. 2004. Premelting dynamics in a continuum model of frost heave. Journal of Fluid Mechanics, 498, 227244.CrossRefGoogle Scholar
Rietveld, H.M. 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystology, 2, 6571.CrossRefGoogle Scholar
Sawlowicz, Z. 2000. Framboids: from their origin to application. Prace Mineralogzne, 88, 180.Google Scholar
Sletten, R.S., Hallet, B.Fletcher, R.C. 2003. Resurfacing time of terrestrial surfaces by the formation and maturation of polygonal patterned ground. Journal of Geophysical Research, 108, 10.1029/2002JE001914.CrossRefGoogle Scholar
Smith, P.H., Tamppari, L., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W., Carswell, A., Catling, D., Clark, B., Duck, T., Dejong, E., Fisher, D., Goetz, W., Gunnlaugsson, P., Hecht, M., Hipkin, V., Hoffman, J., Hviid, S., Keller, H., Kounaves, S., Lange, C.F., Lemmon, M., Madsen, M., Malin, M., Markiewicz, W., Marshall, J., McKay, C., Mellon, M., Michelangeli, D., Ming, D., Morris, R., Renno, N., Pike, W.T., Staufer, U., Stoker, C., Taylor, P., Whiteway, J., Young, S.Zent, A. 2008. Introduction to special section on the Phoenix Mission: landing site characterization experiments, mission overviews, and expected science. Journal of Geophysical Research, 113, 10.1029/2008JE003083.CrossRefGoogle Scholar
Steven, B., Léveillé, R., Pollard, W.H.Whyte, L.G. 2006. Microbial ecology and biodiversity in permafrost. Extermophiles, 10, 259267.CrossRefGoogle ScholarPubMed
White, D.C., Davis, W.M., Nickels, J.S., King, J.D.Bobbie, R.J. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia, 40, 5162.CrossRefGoogle ScholarPubMed
Wilson, A.T. 1979. Geochemical problems of the Antarctic dry areas. Nature, 280, 205208.CrossRefGoogle Scholar
Zent, A.P. 2008. An historical search for thin H2O films at the Phoenix landing site. Icarus, 196, 385408.CrossRefGoogle Scholar
Zent, A.P., Hecht, M.H., Cobos, D.R., Wood, S.E., Hudson, T.L., Milkovich, S.M., Deflores, L.P.Mellon, M.T. 2010. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115, 10.1029/2009JE003420.CrossRefGoogle Scholar
Zent, A.P., Hecht, M.H., Cobos, D.R., Campbell, G.S., Campbell, C.S., Cardell, G., Foote, M.C., Wood, S.E.Mehta, M. 2009. Thermal and Electrical Conductivity Probe (TECP) for Phoenix. Journal of Geophysical Research, 114, 10.1029/2007JE00305.CrossRefGoogle Scholar