Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-24T10:06:19.292Z Has data issue: false hasContentIssue false

Cryptic species, biogeographic complexity and the evolutionary history of the Ectemnorhinus group in the sub-Antarctic, including a description of Bothrometopus huntleyi, n. sp.

Published online by Cambridge University Press:  16 February 2011

G.C. Grobler
Affiliation:
Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
A.D.S. Bastos
Affiliation:
Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
A.M. Treasure
Affiliation:
Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
S.L. Chown*
Affiliation:
Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
*
*Corresponding author: slchown@sun.ac.za

Abstract

The biogeography of the South Indian Ocean Province (SIP) biotas has long been controversial. Much of the discussion has been based on interpretation of species distributions, based on morphological or anatomical delimitations. However, molecular phylogenetic approaches elsewhere have recently shown that interpretations based solely on morphological data may be misleading. Nonetheless, few studies have employed molecular phylogenetic approaches to understand the biogeography of the SIP biotas. We do so here for the Ectemnorhinus group of genera, a monophyletic unit of weevils endemic to the region. We use mitochondrial cytochrome oxidase I DNA sequence data to reconstruct relationships among 13 species and 22 populations in the genera Palirhoeus, Bothrometopus and Ectemnorhinus. On the basis of this analysis we find little support for separating the genus Palirhoeus from Bothrometopus, and little support for the morphologically-based species groups currently recognized within Bothrometopus. Using a molecular clock we show that dispersal among islands probably took place against the prevailing wind direction. These data also support a previous hypothesis of radiation of the epilithic genera Bothrometopus and Palirhoeus during the Pliocene/early Pleistocene, but reject the hypothesis that the genus Ectemnorhinus radiated following the last glacial maximum. We show that Bothrometopus parvulus (C.O. Waterhouse) on the Prince Edward Islands comprises two species that are not sister taxa. We name the second species Bothrometopus huntleyi n. sp. and provide a description thereof.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegrucci, G., Carchini, G., Todisco, V., Convey, P. Sbordoni, V. 2006. A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biology, 29, 320326.CrossRefGoogle Scholar
Alonso-Zarazaga, M.A. Lyal, C.H.C. 1999. A world catalogue of families and genera of Curculionoidea (Insecta: Coleoptera) excluding Scolytidae and Platypodidae. Barcelona: Entomopraxis, 315 pp.Google Scholar
Boelhouwers, J., Meiklejohn, I., Holness, S. Hedding, D. 2008. Geology, geomorphology and climate change. In Chown, S.L. & Froneman, P.W., eds. The Prince Edward Islands: land-sea interactions in a changing ecosystem. Stellenbosch: African Sun Media, 6596.CrossRefGoogle Scholar
Brower, A.V.Z. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 64916495.CrossRefGoogle ScholarPubMed
Chown, S.L. 1989. Habitat use and diet as biogeographic indicators for sub-Antarctic Ectemnorhinini (Coleoptera: Curculionidae). Antarctic Science, 1, 2330.CrossRefGoogle Scholar
Chown, S.L. 1990. Possible effects of Quaternary climatic change on the composition of insect communities of the South Indian Ocean Province Islands. South African Journal of Science, 86, 386391.Google Scholar
Chown, S.L. 1992. A preliminary analysis of weevil assemblages in the sub-Antarctic: local and regional patterns. Journal of Biogeography, 19, 8798.CrossRefGoogle Scholar
Chown, S.L. 1994. Historical ecology of sub-Antarctic weevils: patterns and processes on isolated islands. Journal of Natural History, 28, 411433.CrossRefGoogle Scholar
Chown, S.L. Convey, P. 2007. Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society of London, B362, 23072331.CrossRefGoogle Scholar
Chown, S.L. Kuschel, G. 1994. New Bothrometopus species from Possession Island, Crozet Archipelago with nomenclatural amendments and a key to its weevil fauna (Coleoptera: Curculionidae: Brachycerinae). African Entomology, 2, 149154.Google Scholar
Chown, S.L. Smith, V.R. 1993. Climate change and the short-term impact of feral house mice at the sub-Antarctic Prince Edward Islands. Oecologia, 96, 508516.CrossRefGoogle ScholarPubMed
Chown, S.L., Gremmen, N.J.M. Gaston, K.J. 1998. Ecological biogeography of southern ocean islands: species-area relationships, human impacts, and conservation. American Naturalist, 152, 562575.CrossRefGoogle ScholarPubMed
Craig, D.A., Currie, D.C. Vernon, P. 2003. Crozetia Davies (Diptera: Silmuliidae): redescription of Cr. crozetensis, Cr. seguyi, number of larval instars, phylogenetic relationships and historical biogeography. Zootaxa, 259, 139.CrossRefGoogle Scholar
De Queiroz, A. 2005. The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution, 20, 6873.CrossRefGoogle ScholarPubMed
De Wever, A., Leliaert, F., Verleyen, E., Vanormelingen, P., van der Gucht, K., Hodgson, D.A., Sabbe, K. Vyverman, W. 2009. Hidden levels of phylodiversity in Antarctic green algae: further evidence of glacial refugia. Proceedings of the Royal Society of London, B276, 35913599.Google Scholar
Dreux, P. Voisin, J.F. 1987. Notes sur le genre Antarctonesiotes Jeannel et sur le genre Disker nov., et description d’Antarctonesiotes villiersi n. sp. (Coleoptera, Curculionidae). Nouvelle Revue d'Entomologie (N.S.), 4, 313321.Google Scholar
Dreux, P. Voisin, J.F. 1989. Sur le systématique des genres de la sous-famille des Ectemnorrhininae (Coleoptera, Curculionidae). Nouvelle Revue d'Entomologie (N.S.), 6, 111118.Google Scholar
Drummond, A.J. Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.CrossRefGoogle ScholarPubMed
Farris, J.S. 1969. A successive approximations approach to character weighting. Systematic Biology, 18, 374385.Google Scholar
Fraser, C.I., Nikula, R., Spencer, H.G. Waters, J.M. 2009. Kelp genes reveal effects of sub-Antarctic sea ice during the Last Glacial Maximum. Proceedings of the National Academy of Sciences of the United States of America, 106, 32493253.CrossRefGoogle Scholar
Gressitt, J.L. 1970. Subantarctic entomology and biogeography. Pacific Insects Monograph, 23, 295374.Google Scholar
Grobler, G.C., van Rensburg, L.J., Bastos, A.D.S., Chimimba, C.T. Chown, S.L. 2006. Molecular and morphometric assessment of the taxonomic status of Ectemnorhinus weevil species (Coleoptera: Curculionidae, Entiminae) from the sub-Antarctic Prince Edward Islands. Journal of Zoological Systematics and Evolutionary Research, 44, 200211.CrossRefGoogle Scholar
Grobler, G.C., Bastos, A.D.S., Chimimba, C.T. Chown, S.L. 2011. Inter-island dispersal of flightless Bothrometopus huntleyi (Coleoptera: Curculionidae) from the sub-Antarctic Prince Edward Island archipelago. Antarctic Science, 23, 10.1017/S0954102011000113CrossRefGoogle Scholar
Guindon, S. Gascuel, O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696704.CrossRefGoogle ScholarPubMed
Hall, K. 2002. Review of present and Quaternary periglacial processes and landforms of the maritime and sub-Antarctic region. South African Journal of Science, 98, 7181.Google Scholar
Jeannel, R. 1964. Biogéographie des terres australes de l'océan Indien. Revue Francaise d'Entomologie, 31, 319417.Google Scholar
Kuschel, G. 1971. Curculionidae. In Van Zinderen Bakker, E.M., Winterbottom, J.M. & Dyer. R.A., eds. Marion and Prince Edward islands. Report on the South African Biological and Geological Expedition 1965–1966. Cape Town: A.A. Balkema, 355359.Google Scholar
Kuschel, G. Chown, S.L. 1995. Phylogeny and systematics of the Ectemnorhinus group of genera (Insecta: Coleoptera). Invertebrate Taxonomy, 9, 841863.CrossRefGoogle Scholar
Librado, P. Rozas, J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 10.1093/bioinformatics/btp187.CrossRefGoogle ScholarPubMed
McGaughran, A., Convey, P., Stevens, M.I. Chown, S.L. 2010a. Metabolic rate, genetic and microclimate variation among springtail populations from sub-Antarctic Marion Island. Polar Biology, 33, 909918.CrossRefGoogle Scholar
McGaughran, A., Torricelli, G., Carapelli, A., Frati, F., Stevens, M.I., Convey, P. Hogg, I.D. 2010b. Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between Antarctic Peninsula and continental Antarctica. Journal of Biogeography, 37, 103119.CrossRefGoogle Scholar
Michaux, B. Leschen, R.A.B. 2005. East meets west: biogeology of the Campbell Plateau. Biological Journal of the Linnean Society, 86, 95115.CrossRefGoogle Scholar
Mortimer, E., Jansen van Vuuren, B., Lee, J.E., Marshall, D.J., Convey, P. Chown, S.L. 2010. Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proceedings of the Royal Society of London, 10.1098/rspb.2010.1779.Google ScholarPubMed
Myburgh, M., Chown, S.L., Daniels, S.R. van Vuuren, B.J. 2007. Population structure, propagule pressure and conservation biogeography: lessons from indigenous and invasive springtails. Diversity and Distributions, 13, 143154.CrossRefGoogle Scholar
Papadopoulou, A., Anastasiou, I. Vogler, A.P. 2010. Revisiting the molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution, 10.1093/molbev/msq051.CrossRefGoogle ScholarPubMed
Posada, D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 12531256.CrossRefGoogle ScholarPubMed
Ronquist, F. Huelsenbeck, J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 15721574.CrossRefGoogle ScholarPubMed
Rubinoff, D. 2006. Utility of mitochondrial DNA barcodes in species conservation. Conservation Biology, 20, 10261033.CrossRefGoogle ScholarPubMed
Stevens, M.I., Greenslade, P., Hogg, I.D. Sunnucks, P. 2006. Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Molecular Biology and Evolution, 23, 874882.CrossRefGoogle ScholarPubMed
Swofford, D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.10b. Sunderland, MA: Sinauer Associates.Google Scholar
Tamura, K., Dudley, J., Nei, M. Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 15961599.CrossRefGoogle ScholarPubMed
Thornhill, D.J., Mahon, A.R., Norenburg, J.L. Halanych, K.M. 2008. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nermetea: Lineidae). Molecular Ecology, 17, 51045117.CrossRefGoogle ScholarPubMed
Torricelli, G., Carapelli, A., Convey, P., Nardi, F., Boore, J.L. Frati, F. 2010. High divergence across the whole mitochondrial genome in the pan-Antarctic springtail Friesea grisea: evidence for cryptic species? Gene, 449, 3040.CrossRefGoogle ScholarPubMed
Turner, J., Bindschadler, R., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D., Mayewski, P. Summerhayes, C. eds. 2009. Antarctic climate change and the environment. Cambridge: Scientific Committee on Antarctic Research, 554 pp.Google Scholar
Van de Wouw, M., van Dijk, P. Huiskes, A. 2007. Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv). Journal of Biogeography, 35, 365376.CrossRefGoogle Scholar
Van Der Putten, N., Verbruggen, C., Ochyra, R., Verleyen, E. Frenot, Y. 2010. Subantarctic flowering plants: pre-glacial survivors or post-glacial immigrants? Journal of Biogeography, 37, 582592.CrossRefGoogle Scholar
Vink, C.J. Phillips, C.B. 2007. First record of Sitona discoideus Gyllenhal 1834 (Coleoptera: Curculionidae) on Norfolk Island. New Zealand Journal of Zoology, 34, 283287.CrossRefGoogle Scholar
Wilson, N.G., Schrödl, M. Halanych, K.M. 2009. Ocean barriers and glaciations: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Molecular Ecology, 18, 965984.CrossRefGoogle ScholarPubMed
Supplementary material: File

Grobler Supplementary Material

Grobler Supplementary Material

Download Grobler Supplementary Material(File)
File 54.8 KB