Skip to main content Accessibility help
×
Home

Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs

  • F. J. Ji (a1) (a2) (a3), L. X. Wang (a1) (a3), H. S. Yang (a1) (a3), A. Hu (a1) and Y. L. Yin (a1) (a3) (a4)...

Abstract

The gut is composed of a single layer of intestinal epithelial cells and plays important roles in the digestion and absorption of nutrients, immune and barrier functions and amino acid metabolism. Weaning stress impairs piglet intestinal epithelium structural and functional integrities, which results in reduced feed intake, growth rates and increased morbidity and mortality. Several measures are needed to maintain swine gut development and growth performance after weaning stress. A large body of evidence indicates that, in weaning piglets, glutamine, a functional amino acid, may improve growth performance and intestinal morphology, reduce oxidative damage, stimulate enterocyte proliferation, modulate cell survival and death and enhance intestinal paracellular permeability. This review focuses on the effects of glutamine on intestinal health in piglets. The aim is to provide evidentiary support for using glutamine as a feed additive to alleviate weaning stress.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs
      Available formats
      ×

Copyright

Corresponding author

E-mail: yhs@hunnu.edu.cn

Footnotes

Hide All
a

These two authors contributed equally to this work.

Footnotes

References

Hide All
Amorim, AB, Saleh, MAD, Miassi, GDM and Berto, DA 2018. Dietary supplementation with glutamine or glutamic acid for weanling piglets. Pesquisa Agropecuária Brasileira 53, 229237.
Blachier, F, Guihot-Joubrel, G, Vaugelade, P, Le Boucher, J, Bernard, F, Duée, PH and Cynober, L 1999. Portal hyperglutamatemia after dietary supplementation with monosodium glutamate in pigs. Digestion 60, 349357.
Blachier, F, Wu, G, Yin, Y, Hou, Y and Andriamihaja, M 2013. Developmental amino acid metabolism in the pig small and large intestine epithelial cells. In Nutritional and physiological functions of amino acids in pigs (ed. Blachier, F, Wu, G and Yin, Y), pp. 5974. Springer, Vienna.
Boudry, G, Péron, V, Huërou-Luron, IL, Lallès, JP and Sève, B 2004. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition 134, 22562262.
Chen, S, Xia, Y, Zhu, G, Yan, J, Tan, C, Deng, B, Deng, J, Yin, Y and Ren, W 2018a. Glutamine supplementation improves intestinal cell proliferation and stem cell differentiation in weanling mice. Food & Nutrition Research 62, 1439.
Chen, Y, Tseng, SH, Yao, CL, Li, C and Tsai, YH 2018b. Distinct effects of growth hormone and glutamine on activation of intestinal stem cells. Journal of Parenteral & Enteral Nutrition 42, 642651.
Crespo, I, San-Miguel, B, Prause, C, Marroni, N, Cuevas, MJ, González-Gallego, J and Tuñón, MJ 2012. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS ONE 7, e50407.
Cruzat, V, Macedo Rogero, M, Noel Keane, K, Curi, R and Newsholme, P 2018. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10, 1564.
Darcy-Vrillon, B, Posho, L, Morel, MT, Bernard, F, Blachier, F, Meslin, JC and Duée, PH 1994. Glucose, galactose, and glutamine metabolism in pig isolated enterocytes during development. Pediatric Research 36, 175181.
Di Giancamillo, A, Domeneghini, C, Paratte, R, Dell’Orto, V and Bontempo, V 2003. Oral feeding with L-glutamine and nucleotides: impact on some GALT (gut associated lymphoid tissue) parameters and cell proliferation/death rates in weaning piglets. Italian Journal of Animal Science 2 (suppl. 1), 364366.
Domeneghini, C, Giancamillo, AD, Bosi, G and Arrighi, S 2006. Can nutraceuticals affect the structure of intestinal mucosa? Qualitative and quantitative microanatomy in L-glutamine diet-supplemented weaning piglets. Veterinary Research Communications 30, 331342.
Duan, J, Yin, J, Ren, W, Liu, T, Cui, Z, Huang, X, Wu, L, Kim, SW, Liu, G and Wu, X 2016. Dietary supplementation with L-glutamate and L-aspartate alleviates oxidative stress in weaned piglets challenged with hydrogen peroxide. Amino Acids 48, 5364.
Ehrensvard, G, Fischer, A and Stjernholm, R 1949. Protein metabolism of tissue cells in vitro; the chemical nature of some obligate factors of tissue cell nutrition. Acta Physiologica 18, 218230.
Ewtushik, AL, Bertolo, RFP and Ball, RO 2000. Intestinal development of early-weaned piglets receiving diets supplemented with selected amino acids or polyamines. Canadian Journal of Animal Science 80, 653662.
Gatel, F and Guion, P 1990. Effect of monosodium L glutamate on diet palatability and piglet performance during the suckling and weaning periods. Animal Production 50, 365372.
Gonzales, S, Polizio, AH, Erario, MA and Tomaro, ML 2005. Glutamine is highly effective in preventing in vivo cobalt-induced oxidative stress in rat liver. World Journal of Gastroenterology 11, 35333538.
Harward, TRS, Coe, D, Souba, WW, Klingman, N and Seeger, JM 1994. Glutamine preserves gut glutathione levels during intestinal ischemia/reperfusion. Journal of Surgical Research 56, 351355.
Hsu, CB, Huang, HJ, Wang, CH, Yen, HT and Yu, B 2010. The effect of glutamine supplement on small intestinal morphology and xylose absorptive ability of weaned piglets. African Journal of Biotechnology 9, 70037008.
Janeczko, MJ, Stoll, B, Chang, X, Guan, X and Burrin, DG 2007. Extensive gut metabolism limits the intestinal absorption of excessive supplemental dietary glutamate loads in infant pigs. Journal of Nutrition 137, 23842390.
Jiang, Q, Chen, J, Liu, S, Liu, G, Yao, K and Yin, Y 2017. L-glutamine attenuates apoptosis induced by endoplasmic reticulum stress by activating the IRE1α-XBP1 axis in IPEC-J2: a novel mechanism of L-glutamine in promoting intestinal health. International Journal of Molecular Sciences 18, 2617.
Kitt, SJ, Miller, PS, Lewis, A and Fischer, RL 2002. Effects of glutamine on growth performance and small intestine villus height in weanling pigs. Nebraska Swine Reports 82, 2932.
Li, N and Neu, J 2009. Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. Journal of Nutrition 139, 710714.
Liu, G, Ren, W, Fang, J, Hu, CA, Guan, G, Al-Dhabi, NA, Yin, J, Duraipandiyan, V, Chen, S and Peng, Y 2017. L-glutamine and l-arginine protect against enterotoxigenic Escherichia coli infection via intestinal innate immunity in mice. Amino Acids 49, 110.
Lv, M, Yu, B, Mao, XB, Zheng, P, He, J and Chen, DW 2012. Responses of growth performance and tryptophan metabolism to oxidative stress induced by diquat in weaned pigs. Animal 6, 928934.
Madej, M, Lundh, T and Lindberg, JE 1999. Activities of enzymes involved in glutamine metabolism in connection with energy production in the gastrointestinal tract epithelium of newborn, suckling and weaned piglets. Biology of the Neonate 75, 250258.
Mccracken, BA, Spurlock, ME, Roos, MA, Zuckermann, FA and Gaskins, HR 1999. Weaning anorexia may contribute to local inflammation in the piglet small intestine. Journal of Nutrition 129, 613619.
Moeser, AJ, Klok, CV, Ryan, KA, Wooten, JG, Little, D, Cook, VL and Blikslager, AT 2007. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. American Journal of Physiology-Gastrointestinal and Liver Physiology 292, G173G181.
Molino, JP, Donzele, JL, de Oliveira, RFM, Saraiva, A, Haese, D, Fortes, EI and de Souza, MF 2012. L-glutamine and L-glutamate in diets with different lactose levels for piglets weaned at 21 days of age. Revista Brasileira de Zootecnia 41, 98105.
Montagne, L, Boudry, G, Favier, C, Huërouluron, IL, Lallès, JP and Sève, B 2007. Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. British Journal of Nutrition 97, 4557.
Nicklin, P, Bergman, P, Zhang, B, Triantafellow, E, Wang, H, Nyfeler, B, Yang, H, Hild, M, Kung, C and Wilson, C 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521534.
Niederlechner, S, Baird, C, Petrie, B, Wischmeyer, E and Wischmeyer, PE 2013. Epidermal growth factor receptor expression and signaling are essential in glutamine’s cytoprotective mechanism in heat-stressed intestinal epithelial-6 cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 304, G543G552.
Papaconstantinou, HT, Hwang, KO, Rajaraman, S, Hellmich, MR, Townsend, CM , Jr and Ko, TC 1998. Glutamine deprivation induces apoptosis in intestinal epithelial cells. Surgery 124, 152160.
Pinkus, LM and Windmueller, HG 1977. Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Archives of Biochemistry and Biophysics 182, 506517.
Pluske, JR, Hampson, DJ and Williams, IH 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livestock Production Science 51, 215236.
Reeds, PJ, Burrin, DG, Jahoor, F, Wykes, L, Henry, J and Frazer, EM 1996. Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. American Journal of Physiology 270, E413E418.
Reeds, PJ, Burrin, DG, Stoll, B and Jahoor, F 2000. Intestinal glutamate metabolism. Journal of Nutrition 130, 978S982S.
Rezaei, R, Knabe, DA, Tekwe, CD, Dahanayaka, S, Eide, SJ, Lovering, SL, Ficken, MD, Fielder, SE and Wu, G 2013. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44, 911923.
Rhoads, JM, Keku, EO, Quinn, J, Woosely, J and Lecce, JG 1991. L-glutamine stimulates jejunal sodium and chloride absorption in pig rotavirus enteritis. Gastroenterology 100, 683691.
Ringseis, R, Kynast, AM, Couturier, A, Most, E and Eder, K 2016. Ingestion of frying fat leads to activation of the endoplasmic reticulum stress-induced unfolded protein response in the duodenal mucosa of pigs. Molecular Nutrition & Food Research 60, 957963.
Sato, T, van Es, JH, Snippert, HJ, Stange, DE, Vries, RG, van den Born, M, Barker, N, Shroyer, NF, van de Wetering, M and Clevers, H 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415418.
Seth, A, Basuroy, S, Sheth, P and Rao, RK 2004. L-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. American Journal of Physiology-Gastrointestinal and Liver Physiology 287, G510G517.
Sève, B, Reeds, PJ, Fuller, MF, Cadenhead, A and Hay, SM 1986. Protein synthesis and retention in some tissues of the young pig as influenced by dietary protein intake after early-weaning. Possible connection to the energy metabolism. Reproduction Nutrition Development 26, 849861.
Spreeuwenberg, MA, Verdonk, JM, Gaskins, HR and Verstegen, MW 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. Journal of Nutrition 131, 15201527.
Stoll, B, Henry, J, Reeds, PJ, Yu, H, Jahoor, F and Burrin, DG 1998. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. Journal of Nutrition, 128, 606614.
Swaid, F, Sukhotnik, I, Matter, I, Berkowitz, D, Hadjittofi, C, Pollak, Y and Lavy, A 2013. Dietary glutamine supplementation prevents mucosal injury and modulates intestinal epithelial restitution following acetic acid induced intestinal injury in rats. Nutrition & Metabolism 10, 53.
Teixeira, AD O., Nogueira, ET, Kutschenko, M, Rostagno, HS and Lopes, DC 2014. Inclusion of glutamine associated with glutamic acid in the diet of piglets weaned at 21 days of age. Revista Brasileira De Saude E Producao Animal 15, 881896.
Turner, JR 2009. Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology 9, 799.
Wang, B, Wu, Z, Ji, Y, Sun, K, Dai, Z and Wu, G 2016a. L-glutamine enhances tight junction integrity by activating CaMK Kinase 2-AMP-activated protein kinase signaling in intestinal porcine epithelial cells. Journal of Nutrition 146, 501508.
Wang, H, Zhang, C, Wu, G, Sun, Y, Wang, B, He, B, Dai, Z and Wu, Z 2014. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. Journal of Nutrition 145, 2531.
Wang, J, Chen, L, Li, P, Li, X, Zhou, H, Wang, F, Li, D, Yin, Y and Wu, G 2008. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. Journal of Nutrition 138, 1025.
Wang, J, Zeng, L, Tan, B, Li, G, Huang, B, Xiong, X, Li, F, Kong, X, Liu, G and Yin, Y 2016b. Developmental changes in intercellular junctions and Kv channels in the intestine of piglets during the suckling and post-weaning periods. Journal of Animal Science and Biotechnology 7, 4.
Wijtten, PJ, Van der Meulen, J and Verstegen, MW 2011. Intestinal barrier function and absorption in pigs after weaning: a review. British Journal of Nutrition 105, 967981.
Wu, G 2014. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. Journal of Animal Science and Biotechnology 5, 34.
Wu, G, Bazer, FW, Burghardt, RC, Johnson, GA, Kim, SW, Knabe, DA, Li, X, Satterfield, MC, Smith, SB and Spencer, TE 2010. Functional amino acids in swine nutrition and production. In Dynamics in animal nutrition (ed. J Doppenberg and P van der Aar), pp. 6998. Wageningen Academic Publishers, The Netherlands.
Wu, G, Bazer, FW, Johnson, GA, Knabe, DA, Burghardt, RC, Spencer, TE, Li, XL and Wang, JJ 2011. Triennial growth symposium: important roles for L-glutamine in swine nutrition and production. Journal of Animal Science 89, 20172030.
Wu, G, Meier, SA and Knabe, DA 1996. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. Journal of Nutrition 126, 25782584.
Wu, M, Xiao, H, Ren, W, Yin, J, Hu, J, Duan, J, Liu, G, Tan, B, Xiong, X and Oso, A O 2014. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol. PLoS ONE 9, e113687.
Yang, H, Wang, X, Xia, X and Yin, Y 2016a. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis. Scientific Reports 6, 31917.
Yang, H, Xiong, X, Wang, X, Tan, B, Li, T and Yin, Y 2016b. Effects of weaning on intestinal upper villus epithelial cells of piglets. PLoS ONE 11, e0150216.
Yin, J, Duan, J, Cui, Z, Ren, W, Li, T and Yin, Y 2015a. Hydrogen peroxide-induced oxidative stress activates NF-kB and Nrf2/Keap1 signals and triggers autophagy in piglets. Royal Society of Chemistry Advances 5, 1547915486.
Yin, J, Liu, M, Ren, W, Duan, J, Yang, G, Zhao, Y, Fang, R, Chen, L, Li, T and Yin, Y 2015b. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets. PLoS ONE 10, e0122893.
Yin, J, Wu, MM, Xiao, H, Ren, WK, Duan, JL, Yang, G, Li, TJ and Yin, YL 2014. Development of an antioxidant system after early weaning in piglets. Journal of Animal Science 92, 612.
Zhu, Y, Lin, G, Dai, Z, Zhou, T, Li, T, Yuan, T, Wu, Z, Wu, G and Wang, J 2015. L-Glutamine deprivation induces autophagy and alters the mTOR and MAPK signaling pathways in porcine intestinal epithelial cells. Amino Acids 47, 21852197.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed