Skip to main content Accessibility help
×
Home

Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa

  • A. A. Ayantunde (a1), A. J. Duncan (a2), M. T. van Wijk (a3) and P. Thorne (a2)

Abstract

The role of herbivorous livestock in supporting the sustainability of the farming systems in which they are found is complex and sometimes conflicting. In Sub-Saharan Africa (SSA), the integration of livestock into farming systems is important for sustainable agriculture as the recycling of nutrients for crop production through returns of animal manure is a central element of the dominant mixed crop-livestock systems. Sustainable agriculture has been widely advocated as the main practical pathway to address the challenge of meeting the food needs of the rapidly growing population in SSA while safeguarding the needs of future generations. The objective of this paper is to review the state of knowledge of the role of herbivores in sustainable intensification of key farming systems in SSA. The pathways to sustainable agriculture in SSA include intensification of production and livelihood diversification. Sustainable agricultural practices in SSA have focused on intensification practices which aim to increase the output : input ratio through increasing use of inputs, introduction of new inputs or use of existing inputs in a new way. Intensification of livestock production can occur through increased and improved fodder availability, genetic production gains, improved crop residue use and better nutrient recycling of manure. Livestock deliver many ‘goods’ in smallholder farming systems in SSA including improving food and nutrition security, increased recycling of organic matter and nutrients and the associated soil fertility amendments, adding value to crop residues by turning them into nutrient-rich foods, income generation and animal traction. Narratives on livestock ‘bads’ or negative environmental consequences have been largely shaped by the production conditions in the Global North but livestock production in SSA is a different story. In SSA, livestock are an integral component of mixed farming systems and they play key roles in supporting the livelihoods of much of the rural population. None-the-less, the environmental consequences of livestock production on the continent cannot be ignored. To enhance agricultural sustainability in SSA, the challenge is to optimize livestock’s role in the farming systems by maximizing livestock ‘goods’ while minimizing the ‘bads’. This can be through better integration of livestock into the farming systems, efficient nutrient management systems, and provision of necessary policy and institutional support.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa
      Available formats
      ×

Copyright

Corresponding author

Footnotes

Hide All
a

Present address: Global Academy of Agriculture and Food Security, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.

Footnotes

References

Hide All
Amole, TA, Zijlstra, M, Descheemaeker, K, Ayantunde, AA and Duncan, AJ 2017. Assessment of lifetime performance of small ruminants under different feeding systems. Animal 11, 881889.
Anderson, S 2003. Animal genetic resources and sustainable livelihoods. Ecological Economics 45, 331339.
Asner, GP, Elmore, AJ, Olander, LP, Martin, RE and Harris, A 2004. Grazing systems, ecosystem responses, and global change. Annual Review of Environmental Resources 29, 261299.
Baudron, F, Jaleta, M, Okitoi, O and Tegegn, A 2014. Conservation agriculture in African mixed crop-livestock systems: expanding the niche. Agriculture, Ecosystems and Environment 187, 171182.
Bebe, BO, Udo, HMJ and Thorpe, W 2002. Development of smallholder dairy systems in the Kenya highlands. Outlook on Agriculture 31, 113120.
Diao, X, Cossar, F, Houssou, N and Kolavalli, S 2014. Mechanization in Ghana: emerging demand, and the search for alternative supply models. Food Policy 48, 168181.
D’Odorico, P, Okin, GS and Bestelmeyer, BT 2012. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5, 520530.
Dongmo, AL, Vall, E, Dugué, P, Njoya, A and Lossouarn, J 2012. Designing a process of co-management of crop residues for forage and soil conservation in Sudano-Sahel. Journal of Sustainable Agriculture 36, 106126.
Douxchamps, S, Ayantunde, A and Barron, J 2014. Taking stock of forty years of agricultural water management interventions in smallholder systems of Burkina Faso. Water Resources and Rural Development 3, 113.
Ellis, F 1998. Household strategies and rural livelihood diversification. Journal of Development Studies 35, 138.
Fan, S and Brzeska, J 2016. Sustainable food security and nutrition: demystifying conventional beliefs. Global Food Security 11, 1116.
Food and Agriculture Organization (FAO) 2011. Mapping supply and demand for animal source food to 2030. The Food and Agriculture Organization of the United Nations, Rome, Italy.
Garnett, T, Appleby, MC, Balmford, A, Bateman, IJ, Benton, TG, Bloomer, P, Burlingame, B, Dawkins, M, Dolan, L, Fraser, D, Herrero, M, Hoffmann, I, Smith, P, Thornton, PK, Toulmin, C, Vermeulen, SJ and Godfray, HCJ 2013. Sustainable intensification in agriculture: premises and policies. Science 341, 3334.
Gerber, PJ, Steinfeld, H, Henderson, B, Mottet, A, Opio, C, Dijkman, J, Falcucci, A and Tempio, G 2013. Tackling climate change through liestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Giller, KE, Corbeels, M, Nyamangara, J, Triomphe, B, Affholder, F, Scopel, E and Tittonell, P 2011. A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research 124, 468472.
Giller, KE, Witter, E, Corbeels, M and Tittonell, P 2009. Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Research 114, 2334.
Gunton, RM, Firbank, LG, Inman, A and Winter, DM 2016. How scalable is sustainable intensification? Nature Plants 2, 14.
Herrero, M, Havlik, P, Valin, H, Notenbaert, A, Rufino, MC, Thornton, PK, Blummel, M, Weiss, F, Grace, D and Obersteiner, M 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of National Academy of Sciences 110, 2088820893.
Hiernaux, P and Ayantunde, A 2004. The Fakara: a semi-arid agro-ecosystem under stress. Report of research activities of International Livestock Research Institute (ILRI) in Fakara, South-western Niger, between 1994 and 2002, Desert Margins Program, ICRISAT Niamey, Niger. https://cgspace.cgiar.org/handle/10568/1550.
Hounkonnou, D, Kossou, D, Kuyper, TW, Leeuwis, C, Nederlof, ES, Röling, N, Sakyi-Dawson, O, Traoré, M and van Huis, A 2012. An innovation systems approach to institutional change: smallholder development in West Africa. Agricultural Systems 108, 7483.
Jones, KE, Patel, NG, Levy, MA, Storeygard, A, Balk, D, Gittleman, JL and Daszak, P 2008. Global trends in emerging infectious diseases. Nature 451, 990993.
Kabore, TW, Houot, S, Hien, E, Zombré, P, Hien, V and Masse, D 2010. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa. Bioresource Technology 101, 10021013.
Klapwijk, C, van Wijk, M, Rosenstock, T, van Asten, P, Thornton, P and Giller, K 2014. Analysis of trade-offs in agricultural systems: current status and way forward. Current Opinion in Environmental Sustainability 6, 110115.
Mayberry, D, Ash, A, Prestwidge, D, Godde, CM, Henderson, B, Duncan, A, Blummel, M, Reddy, YR and Herrero, M 2017. Yield gap analyses to estimate attainable bovine milk yields and evaluate options to increase production in Ethiopia and India. Agricultural Systems 155, 4351.
Mekasha, A, Gerard, B, Tesfaye, K, Nigatu, L and Duncan, AJ 2014. Inter-connection between land use/land cover change and herders’/farmers’ livestock feed resource management strategies: a case study from three Ethiopian eco-environments. Agriculture Ecosystems and Environment 188, 150162.
The Montpellier Panel 2013. Sustainable intensification: a new paradigm for African agriculture. A 2013 Montpellier Panel Report, Agriculture for Impact, London, UK.
National Research Council (NRC) 2010. Toward sustainable agricultural systems in the 21st century. Committee on Twenty-First Century Systems Agriculture; National Research Council. The National Academies Press, Washington, DC, USA.
New Partnership for Africa’s Development 2003. Comprehensive Africa Agriculture Development Programme (CADDP). NEPAD, African Union, Addis Ababa, Ethiopia.
Otte, MJ and Chilonda, P 2002. Cattle and small ruminant production systems in sub-Saharan Africa: a systematic review. Food and Agriculture Organization of the United Nations, Rome, Italy.
Paul, BK, Frelat, R, Birnholz, C, Ebong, C, Gahigi, A, Groot, JCJ, Herrero, M, Kagabo, DM, Notenbaert, A, Vanlauwe, B and van Wijk, MT 2018. Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: ex-ante impacts and trade-offs. Agricultural Systems 163, 1626.
Peden, D, Taddesse, G and Misra, AK 2007. Water and livestock for human development. In Water for food, water for life: A comprehensive assessment of water management in agriculture (ed. D Molden), pp. 485514. Earthscan, London, UK.
Pedersen, J and Benjaminsen, T 2008. One leg or two? Food security and pastoralism in the Northern Sahel. Human Ecology 36, 4357.
Pretty, J, Toulmin, C and Williams, S 2011. Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability 9, 524.
Reynolds, LP, Wulster-Radcliffe, MC, Aaron, DK and Davis, TA 2015. Importance of animals in agricultural sustainability and food security. The Journal of Nutrition 145, 13771379.
Ritzema, RS, Frelat, R, Douxchamps, S, Silvestri, S, Rufino, MC, Herrero, M, Giller, KE, López-Ridaura, S, Teufel, N, Birthe, P and Wijk, MT 2017. Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa. Food Security Food Security 9, 115131.
Rockström, J, Barron, J and Fox, P 2002. Rainwater management for increased productivity among smallholder farmers in drought prone environments. Physics and Chemistry of the Earth 27, 949959.
Rudel, TK, Kwon, OJ, Paul, BK, Boval, M, Rao, IM, Burbano, D, McGroddy, M, Lerner, AM, White, D, Cuchillo, M, Luna, M and Peters, M 2016. Do smallholder, mixed crop-livestock livelihoods encourage sustainable agricultural practices? A meta-analysis. Land 5, 6.
Rufino, MC, Dury, J, Tittonell, P, van Wijk, MT, Herrero, M, Zingore, S, Mapfumo, P and Giller, KE 2011. Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agricultural Systems 104, 175190.
Rufino, MC, Herrero, M, van Wijk, MT, Hemerik, L, De Ridder, N and Giller, KE 2009. Lifetime productivity of dairy cows in smallholder farming systems of the central highlands of Kenya. Animal Biology 3, 10441056.
Rusinamhodzi, L, Corbeels, M, Zingore, S, Nyamangara, J and Giller, KE 2013. Pushing the envelope? Maize production intensification and the role of cattle manure in recovery of degraded soils in smallholder farming areas of Zimbabwe. Field Crops Research 147, 4053.
Savadogo, K, Reardon, T and Pietola, K 1998. Adoption of improved land use technologies to increase food security in Burkina Faso: relating animal traction, productivity, and non-farm income. Agricultural Systems 58, 441464.
Schiere, JB, Ibrahim, MNM and van Keulen, H 2002. The role of livestock for sustainability in mixed farming: criteria and scenario studies under varying resource allocation. Agriculture, Ecosystems and Environment 90, 139153.
Sheahan, M and Barrett, CB 2017. Ten striking facts about agricultural input use in Sub-Saharan Africa. Food Policy 67, 1225.
Smith, A, Snapp, S, Chikowo, R, Thorne, P, Bekunda, M and Glover, J 2017. Measuring sustainable intensification in smallholder agroecosystems: a review. Global Food Security 12, 127138.
Steinfeld, H, Gerber, P, Wassenaar, T, Castel, V, Rosales, M and Haan, CD 2006. Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, Italy.
Udo, HMJ, Aklilu, HA, Phong, LT, Bosma, RH, Budisatria, IGS, Patil, BR, Samdup, T and Bebe, BO 2011. Impact of intensification of different types of livestock production in smallholder crop-livestock systems. Livestock Science 139, 2229.
Valbuena, D, Erenstein, O, Homann-Kee Tui, S, Abdoulaye, T, Claessens, L, Duncan, AJ, Gérard, B, Rufino, MC, Teufel, N, van Rooyen, A and van Wijk, MT 2012. Conservation Agriculture in mixed crop–livestock systems: scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Research 132, 175184.
Vall, E, Marre-Cast, L and Kamgang, HJ 2017. Chemins d’intensification et durabilité des exploitations de polyculture-élevage en Afrique subsaharienne: contribution de l’association agriculture-élevage. Cahier d’Agriculture 26, 25006.
Weiler, V, Udo, HMJ, Viets, T, Crane, TA and de Boer, IJM 2014. Handling multi-functionality of livestock in a life cycle assessment: the case of smallholder dairying in Kenya. Current Opinion in Environmental Sustainability 8, 2938.
Wilkinson, JM 2011. Re-defining efficiency of feed use by livestock. Animal 5, 10141022.
Zougmoré, R, Partey, S, Ouédraogo, M, Omitoyin, B, Thomas, T, Ayantunde, A, Ericksen, P, Said, M and Jalloh, A 2016. Toward climate‑smart agriculture in West Africa: a review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agriculture and Food Security 5, 26.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed