Skip to main content Accessibility help
×
Home

Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management

  • N. C. Friggens (a1), F. Blanc (a2) (a3), D. P. Berry (a4) and L. Puillet (a1)

Abstract

As the environments in which livestock are reared become more variable, animal robustness becomes an increasingly valuable attribute. Consequently, there is increasing focus on managing and breeding for it. However, robustness is a difficult phenotype to properly characterise because it is a complex trait composed of multiple components, including dynamic elements such as the rates of response to, and recovery from, environmental perturbations. In this review, the following definition of robustness is used: the ability, in the face of environmental constraints, to carry on doing the various things that the animal needs to do to favour its future ability to reproduce. The different elements of this definition are discussed to provide a clearer understanding of the components of robustness. The implications for quantifying robustness are that there is no single measure of robustness but rather that it is the combination of multiple and interacting component mechanisms whose relative value is context dependent. This context encompasses both the prevailing environment and the prevailing selection pressure. One key issue for measuring robustness is to be clear on the use to which the robustness measurements will employed. If the purpose is to identify biomarkers that may be useful for molecular phenotyping or genotyping, the measurements should focus on the physiological mechanisms underlying robustness. However, if the purpose of measuring robustness is to quantify the extent to which animals can adapt to limiting conditions then the measurements should focus on the life functions, the trade-offs between them and the animal’s capacity to increase resource acquisition. The time-related aspect of robustness also has important implications. Single time-point measurements are of limited value because they do not permit measurement of responses to (and recovery from) environmental perturbations. The exception being single measurements of the accumulated consequence of a good (or bad) adaptive capacity, such as productive longevity and lifetime efficiency. In contrast, repeated measurements over time have a high potential for quantification of the animal’s ability to cope with environmental challenges. Thus, we should be able to quantify differences in adaptive capacity from the data that are increasingly becoming available with the deployment of automated monitoring technology on farm. The challenge for future management and breeding will be how to combine various proxy measures to obtain reliable estimates of robustness components in large populations. A key aspect for achieving this is to define phenotypes from consideration of their biological properties and not just from available measures.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

References

Hide All
Amer, PR 2012. Turning science on robust cattle into improved genetic selection decisions. Animal 6, 551556.
Animal Task Force (eds). 2013. Research & innovation for a sustainable livestock sector in Europe: suggested priorities for support under Horizon 2020 to enhance innovation and sustainability in the livestock production sector of Europe’s food supply chains. Animal Task Force White Paper, pp. 1–39. Retrieved 4 January 2017 from http://www.animaltaskforce.eu,.
Banos, G, Brotherstone, S and Coffey, MP 2005. Genetic profiles of total body energy content of Holstein cows in the first three lactations. Journal of Dairy Science 88, 26162623.
Bateson, P and Gluckman, P 2011. Plasticity, robustness, development and evolution. Cambridge University Press, Cambridge, UK.
Beerda, B, Ouweltjes, W, Šebek, LBJ, Windig, JJ and Veerkamp, RF 2007. Effects of genotype by environment interactions on milk yield, energy balance, and protein balance. Journal of Dairy Science 90, 219228.
Berry, DP, Bermingham, ML, Good, M and More, SJ 2011. Genetics of animal health and disease in cattle. Irish Veterinary Journal 64, 5.
Berry, DP, Buckley, F, Dillon, P, Evans, RD, Rath, M and Veerkamp, RF 2003. Estimation of genotype-environment interactions in a grass-based system, for milk yield, body condition score, and body weight using random regression models. Livestock Production Science 83, 191203.
Berry, DP and Crowley, JJ 2012. Residual intake and body weight gain: a new measure of efficiency in growing cattle. Journal of Animal Science 90, 109115.
Berry, DP, Friggens, NC, Lucy, MC and Roche, JR 2016. Milk production and fertility in dairy cattle. Annual Review of Animal Boisciences 4, 269290.
Berry, DP, Lassen, J and de Haas, Y 2015. Residual feed intake and breeding approaches for enteric methane mitigation. In Livestock production and climate change: CABI climate change series (ed. Malik PK, Bhatta R, Takahashi J, Kohn RA and Prasad CS), pp. 273291. CABI, UK.
Bjerre-Harpøth, V, Friggens, NC, Thorup, VM, Larsen, T, Ingvartsen, KL and Moyes, KM 2012. Decreased nutrient density to increase physiological imbalance for dairy cows at different stages of lactation: 1. Milk yield and component responses. Journal of Dairy Science 95, 23622380.
Blanc, F, Bocquier, F, Agabriel, J, D’Hour, P and Chilliard, Y 2006. Adaptive abilities of the females and sustainability of ruminant livestock systems. A review. Animal Research 55, 489510.
Boer, HMT, Apri, M, Molenaar, J, Stötzel, C, Veerkamp, RF and Woelders, H 2012. Candidate mechanisms underlying atypical progesterone profiles as deduced from parameter perturbations in a mathematical model of the bovine estrous cycle. Journal of Dairy Science 95, 38373851.
Calus, MPL, Berry, DP, Banos, G, de Haas, Y and Veerkamp, RF 2013. Genomic selection: the option for new robustness traits? Advances in Animal Biosciences 4, 618625.
Canario, L, Mignon-Grasteau, S, Dupont-Nivet, M and Phocas, F 2013. Genetics of behavioural adaptation of livestock to farming conditions. Animal 7, 357377.
De Hollander, CA, Knol, EF, Heuven, HCM and van Grevenhof, EM 2015. Interval from last insemination to culling: II. Culling reasons from practise and the correlation with longevity. Livestock Science 181, 2530.
De La Torre, A, Recoules, E, Blanc, F, Ortigues-Marty, I, D’Hour, P and Agabriel, J 2015. Changes in calculated residual energy in variable nutritional environments: an indirect approach to apprehend suckling beef cows robustness. Livestock Science 176, 7584.
Douhard, F, Friggens, NC, Amer, PR and Tichit, M 2014. Synergy between selection for production and longevity and the use of extended lactation: insights from a resource allocation model in a dairy goat herd. Journal of Animal Science 92, 52515266.
Drangsholt, TMK, Damsgård, B and Olesen, I 2014. Quantitative genetics of behavioural responsiveness in Atlantic cod (Gadus morhua L.). Aquaculture 420, 282287.
Dumont, B, Gonzáles-Garcia, E, Thomas, M, Fortun-Lamothe, L, Ducrot, C, Dourmad, JY and Tichit, M 2014. Forty research issues for the redesign of animal production systems in the 21st century. Animal 8, 13821392.
Egger-Danner, C, Cole, JB, Pryce, JE, Gengler, N, Heringstad, B, Bradley, A and Stock, KF 2015. Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 9, 191207.
Fischer, A, Luginbuhl, T, Delattre, L, Delouard, JM and Faverdin, P 2015. Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in Holstein dairy cows. Journal of Dairy Science 98, 44654476.
Friggens, NC, Berg, P, Theilgaard, P, Korsgaard, IR, Ingvartsen, KL, Løvendahl, PL and Jensen, J 2007. Breed and parity effects on energy balance profiles through lactation: evidence for genetically driven body reserve change. Journal of Dairy Science 90, 52915305.
Friggens, NC, Duvaux-Ponter, C, Etienne, MP, Mary-Huard, T and Schmidely, P 2016. Characterizing individual differences in animal responses to a nutritional challenge: toward improved robustness measures. Journal of Dairy Science 99, 27042718.
Friggens, NC and van der Waaij, EH 2009. Modelling of resource allocation patterns. In Resource allocation theory applied to farm animal production (ed. WA Rauw), pp. 302320. CAB International Publishing, Wallingford, UK.
Hansen, J, Sato, M and Ruedy, R 2012. Perception of climate change. In Proceedings National Academy of Science, pp. E2415–E2423.
Højsgaard, S and Friggens, NC 2010. Quantifying degree of mastitis from common trends in a panel of indicators for mastitis in dairy cows. Journal of Dairy Science 93, 582592.
Horan, B, Faverdin, P, Delaby, L, Rath, M and Dillon, P 2006. The effect of strain of Holstein-Friesian dairy cows and pasture-based system on grass intake and milk production. Animal Science 82, 435444.
Humphries, MM, Thomas, DW and Kramer, DL 2003. The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiological and Biochemical Zoology 76, 165179.
Kelleher, MM, Amer, PR, Shalloo, L, Evans, RD, Byrne, TJ, Buckley, F and Berry, DP 2015. Development of an index to rank dairy females on expected lifetime profit. Journal of Dairy Science 98, 42254239.
Kitano, H 2004. Biological robustness. Nature Reviews Genetics 5, 826837.
Knap, PW 2009. Robustness. In Resource allocation theory applied to farm animal production (ed. WA Rauw), pp. 288301. CAB International Publishing, Wallingford, UK.
Knap, PW and Su, G 2008. Genotype by environment interaction for litter size in pigs as quantified by reaction norms analysis. Animal 2, 17421747.
Larsen, T, Røntved, CM, Ingvartsen, KL, Vels, L and Bjerring, M 2010. Enzyme activity and acute phase proteins in milk utilized as indicators of acute clinical E. coli LPS-induced mastitis. Animal 4, 16721679.
Lee, GJ, Atkins, KD and Sladek, MA 2009. Heterogeneity of lifetime reproductive performance, its components and associations with wool production and liveweight of Merino ewes. Animal Production Science 49, 624629.
Lewontin, RC 1974. The analysis of variance and the analysis of causes. American Journal of Human Genetics 26, 400411.
Martin, K and Wiebe, KL 2004. Coping mechanisms of alpine and arctic breeding birds: extreme weather and limits to reproductive resilience. Integrative and Comparative Biology 44, 177185.
Martin, O and Sauvant, D 2010. A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 1. Trajectories of life function priorities and genetic scaling. Animal 4, 20302047.
Mathur, RK, Herrero-Medrano, JM, Alexandri, P, Knol, EF, ten Napel, J, Rashidi, H and Mulder, HA 2014. Estimating challenge load due to disease outbreaks and other challenges using reproduction records of sows. Journal of Animal Science 92, 53745381.
Mirkena, T, Duguma, G, Haile, A, Tibbo, M, Okeyo, AM, Wurzinger, M and Sölkner, J 2011. Genetics of adaptation in domestic farm animals: a review. Livestock Science 132, 112.
Montano-Bermudez, M, Nielsen, MK and Deutscher, GH 1990. Energy requirements for maintenance of crossbred beef cattle with different genetic potential for milk. Journal of Animal Science 68, 22792288.
Nestor, KE, Noble, DO, Zhu, J and moritsu, Y 1996. Direct and correlated responses to long-term selection for increased body weight and egg production in Turkeys. Poultry Science 75, 11801191.
Ollion, E, Ingrand, S, Delaby, L, Trommenschlager, JM, Colette-Leurent, S and Blanc, F 2016. Assessing the diversity of trade-offs between life functions in early lactation dairy cows. Livestock Science 183, 98107.
O’Mara, FP 2012. The role of grasslands in food security and climate change. Annals Botany 110, 12631270.
Pryce, JE, Coffey, MP, Brotherstone, S and Woolliams, JA 2002. Genetic relationships between calving interval and body condition score conditional on milk yield. Journal of Dairy Science 85, 15901595.
Pryce, JE, Harris, BL, Bryant, JR and Montgomerie, WA 2009. Do robust cows already exist? In Breeding for robustness in cattle. EAAP publication No. 126 (ed. M Klopcic, R Reents, J Philipsson and A Kuipers), pp. 99112. Wageningen Academic Publishers, The Netherlands.
Puillet, L and Martin, O 2017. A dynamic model as a tool to describe the variability of lifetime body weight trajectories in ruminant females. Proceedings 64th EAAP Meeting p150.
Puillet, L, Réale, D and Friggens, NC 2016. Disentangling the relative roles of resource acquisition and allocation on animal feed efficiency: insights from a dairy cow model. Genetics Selection Evolution 48, 72.
Rauw, WM and Gomez-Raya, L 2015. Genotype by environment interaction and breeding for robustness in livestock. Frontiers in Genetics 6, 310.
Rendel, J and Robertson, A 1950. Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle. Journal of Genetics 50, 18.
Royal, MD, Pryce, JE, Woolliams, JA and Flint, APF 2002. The genetic relationship between commencement of luteal activity and calving interval, body condition score, production, and linear type traits in Holstein-Friesian dairy cattle. Journal of Dairy Science 85, 30713080.
Rutten, CJ, Velthuis, AGJ, Steeneveld, W and Hogeveen, H 2013. Invited review: sensors to support health management on dairy farms. Journal of Dairy Science 96, 19281952.
Sadoul, B, Leguen, I, Colson, V, Friggens, NC and Prunet, P 2015a. A multivariate analysis using physiology and behaviour to characterize robustness in two isogenic lines of rainbow trout exposed to a confinement stress. Physiology and Behaviour 140, 139147.
Sadoul, B, Martin, O, Prunet, P and Friggens, NC 2015b. On the use of a simple physical system to study robustness features in animal sciences. PLoS ONE 10, e0137333.
Savietto, D, Friggens, NC and Pascual, JJ 2015. Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genetics Selection Evolution 47, 2.
Schader, C, Muller, A, El-Hage Scialabba, N, Hecht, J, Isensee, A, Erb, KH, Smith, P, Makkar, HPS, Kloche, P, Leiber, F, Schwegler, P, Stolze, M and Niggli, U 2015. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. Journal Royal Society Interface 12, 20150891.
Sewalem, A, Miglior, F, Kistemaker, GJ, Sullivan, P and Van Doormaal, BJ 2008. Relationships between reproduction traits and functional longevity in Canadian dairy cattle. Journal of Dairy Science 91, 16601668.
Stearns, SC 1992. The evolution of life histories. Oxford University Press, Oxford, UK.
Taff, CC and Vitousek, MN 2016. Endocrine flexibility: optimizing phenotypes in a dynamic world. Trends in Ecology and Evolution 31, 476488.
ten Napel, J, van der Veen, AA, Oosting, SJ and Groot Koerkamp, PWG 2011. A conceptual approach to design livestock production systems for robustness to enhance sustainability. Livestock Science 139, 150160.
Thorup, VM, Højsgaard, S, Weisberg, MR and Friggens, NC 2013. Energy balance of individual cows can be estimated in real-time on-farm using frequent liveweight measures even in the absence of body condition score. Animal 7, 16311639.
Tixier-Boichard, M, Verrier, E, Rognon, X and Zerjal, T 2015. Farm animal genetic and genomic resources from an agroecological perspective. Frontiers in Genetics 6, 153.
Van der Most, PJ, de Jong, B, Parmentier, HK and Verhulst, S 2011. Trade-off between growth and immune function: a meta-analysis of selection experiments. Functional Ecology 25, 7480.
van Noordwijk, AJ and De Jong, G 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. The American Naturalist 128, 137142.
Wright, IA, Rhind, SM, Whyte, TK and Smith, AJ 1992. Effects of body condition at calving and feeding level after calving on LH profiles and the duration of the post-partum anoestrus period in beef cows. Animal Production 55, 4146.
Yatoo, MI, Kumar, P, Dimri, U and Sharma, MC 2012. Effects of climate change on animal health and diseases. International Journal Livestock Research 2, 1524.

Keywords

Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management

  • N. C. Friggens (a1), F. Blanc (a2) (a3), D. P. Berry (a4) and L. Puillet (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed