Skip to main content Accessibility help
×
Home

Review: Beef-eating quality: a European journey

  • L. J. Farmer (a1) and D. T. Farrell (a1)

Abstract

This paper reviews recent research into predicting the eating qualities of beef. A range of instrumental and grading approaches have been discussed, highlighting implications for the European beef industry. Studies incorporating a number of instrumental and spectroscopic techniques illustrate the potential for online systems to non-destructively measure muscle pH, colour, fat and moisture content of beef with R2 (coefficient of determination) values >0.90. Direct predictions of eating quality (tenderness, flavour, juiciness) and fatty acid content using these methods are also discussed though success is greatly variable. R2 values for instrumental measures of tenderness have been quoted as high as 0.85 though R2 values for sensory tenderness values can be as low as 0.01. Discriminant analysis models can improve prediction of variables such as pH and shear force, correctly classifying beef samples into categorical groups with >90% accuracy. Prediction of beef flavour continues to challenge researchers and the industry alike, with R2 values rarely quoted above 0.50, regardless of instrumental or statistical analysis used. Beef grading systems such as EUROP and United States Department of Agriculture systems provide carcase classification and some indication of yield. Other systems attempt to classify the whole carcase according to expected eating quality. These are being supplemented by schemes such as Meat Standards Australia (MSA), based on consumer satisfaction for individual cuts. In Australia, MSA has grown steadily since its inception generating a 10% premium for the beef industry in 2015-16 of $187 million. There is evidence that European consumers would respond to an eating quality guarantee provided it is simple and independently controlled. A European beef quality assurance system might encompass environmental and nutritional measures as well as eating quality and would need to be profitable, simple, effective and sufficiently flexible to allow companies to develop their own brands.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review: Beef-eating quality: a European journey
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review: Beef-eating quality: a European journey
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review: Beef-eating quality: a European journey
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Aass, L, Fristedt, CG and Gresham, JD 2009. Ultrasound prediction of intramuscular fat content in lean cattle. Livestock Science 125, 177186.
Acheson, RJ, Woerner, DR and Tatum, JD 2014. Effects of USDA carcass maturity on sensory attributes of beef produced by grain-finished steers and heifers classified as less than 30 months old using dentition. Journal of Animal Science 92, 17921799.
AHDB Industry Consulting 2008. Review of the EU Carcase Classification System for Beef and Sheep (EPES 0708/01). A report for DEFRA. AHDB Industry Consulting, Kenilworth, Warwickshire.
Andres, S, Silva, A, Soares-Pereira, AL, Martins, C, Bruno-Soares, AM and Murray, I 2008. The use of visible and near infrared reflectance spectroscopy to predict beef M-longissimus thoracic et lumborum quality attributes. Meat Science 78, 217224.
Anonymous. European Commission, Agriculture and Rural Development 2017. Food Quality Assurance and Certification Schemes managed within an integrated supply chain. Retrieved on 24 April 2018 from http://ec.europa.eu/agriculture/quality/certification/index2_en.htm
Aragrande, M, Segre, A, Gentile, E, Malorgio, G, Giraud Heraud, E, Robles Robels, R, Halicka, E, Loi, A and Bruni, M 2005. Food supply chains dynamics and quality certification, European Commission. Retrieved on 24 April 2018 from http://ec.europa.eu/agriculture/quality/certification/docs/chain_finrep_en.pdf
Barbut, S 2014. Review: automation and meat quality-global challenges. Meat Science 96, 335345.
Beattie, JR, Bell, SEJ, Borgaard, C, Fearon, A and Moss, BW 2006. Prediction of adipose tissue composition using Raman spectroscopy: average properties and individual fatty acids. Lipids 41, 287294.
Beattie, RJ, Bell, SJ, Farmer, LJ, Moss, BW and Desmond, PD 2004. Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside. Meat Science 66, 903913.
Bonny, S, Polkinghorne, R, Strydom, P, Matthews, K, Lopez-Fandino, R, Nishimura, T, Scollan, N, Pethick, D and Hocquette, JF 2017. Quality assurance schemes in major beef-producing countries. New aspects of meat quality (ed. PP Purslow), pp. 223255. Elsevier Ltd, Oxford, UK.
Bonny, SPF, Hocquette, J-F, Pethick, DW, Legrand, I, Wierzbicki, J, Allen, P, Farmer, LJ, Polkinghorne, RJ and Gardner, GE 2018. The variability of the eating quality of European beef can be reduced by predicting consumer satisfaction. Animal , first published online 2 April 2018, https://doi.org/10.1017/S1751731118000605.
Cluff, K, Naganathan, GK, Subbiah, J, Samal, A and Calkins, CR 2013. Optical scattering with hyperspectral imaging to classify longissimus dorsi muscle based on beef tenderness using multivariate modeling. Meat Science 95, 4250.
Craigie, CR, Navajas, EA, Purchas, RW, Maltin, CA, Bunger, L, Hoskin, SO, Ross, DW, Morris, ST and Roehe, R 2012. A review of the development and use of video image analysis (VIA) for beef carcass evaluation as an alternative to the current EUROP system and other subjective systems. Meat Science 92, 307318.
ElMasry, G, Sun, DW and Allen, P 2011. Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International 44, 26242633.
ElMasry, G, Sun, DW and Allen, P 2012. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering 110, 127140.
ElMasry, G, Sun, DW and Allen, P 2013. Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. Journal of Food Engineering 117, 235246.
Eurostat 2016. Slaughtering in slaughterhouses – annual data. Europa. Retrieved on 7 July 2017 from http://appsso.eurostat.ec.europa.eu/nui/setupDownloads.do
Farmer, LJ, Bowe, R, Troy, DT, Bonny, SPF, Birnie, J, Dell’Orto, V, Polkinghorne, RJ, Wierzbicki, J, de Roest, K, Scollan, ND, Henchion, M, Morrison, SJ, Legrand, I, Roehe, R, Hocquette, JF and Duhem, K 2016. Report of the workshop ‘Sustainable beef quality for Europe – A workshop for industry and scientists’. Viandes & Produits Carnés, 32, VPC-2016-2032-2011-2016.
Farmer, LJ, Devlin, DJ, Gault, NFS, Gee, A, Gordon, AW, Moss, BW, Polkinghorne, RJ, Thompson, JM, Tolland, ELC and Tollerton, IJ 2009b. Effect of type and extent of cooking on the eating quality of Northern Ireland beef. In Proceedings of the 55th International Congress on Meat Science and Technology, Copenhagen, Denmark, p. PE7.33.
Farmer, LJ, Devlin, DJ, Gault, NFS, Gordon, AW, Moss, BW, Polkinghorne, RJ, Thompson, JM, Tolland, ELC and Tollerton, IJ 2009a. Prediction of eating quality using the Meat Standards Australia system for Northern Ireland beef and consumers. In Proceedings of the 55th International Congress on Meat Science and Technology, 16–21 August 2009, Copenhagen, Denmark, p. PE 7.34.
Farmer, LJ, Devlin, DJ, Gault, NFS, Gordon, AW, Moss, BW, Polkinghorne, RJ, Thompson, JM, Tolland, ELC, Tollerton, IJ and Watson, R 2010b. Adaptation of Meat Standards Australia quality system for Northern Irish beef. Advances in Animal Biosciences 1, 127127.
Farmer, LJ, Devlin, DJ, Gault, NFS, Gordon, AW, Moss, BW, Tolland, ELC and Tollerton, IJ 2010a. Comparison of systems for assuring the eating quality of beef. Advances in Animal Biosciences 1, 231231.
Farmer, LJ, Hagan, TDJ, Oltra, OR, Devlin, Y and Gordon, AW 2013. Relating beef aroma compounds to flavour precursors and other measures of quality. In Proceedings of the 10th Wartburg Symposium of Current Topics in Flavor Chemistry and Biology (ed. T Hofmann, D Krautwurst and P Shieberle), 16–19 April 2013, Wartburg Flavour Symposium, Eisenach, Germany, pp. 202–210.
Farmer, LJ, Straif, K, De Smet, S, Russo, V, Roehe, R, Moloney, A, Hocquette, JF, Farrell, D, Polkinghorne, R, Wierzbicki, J, Searchinger, T, Zhang, D, Capri, E, Ferrari, P, Birnie, J, Vigano, V, McDonnell, C, Hadley, P, Hagan, T and Troy, DT 2017. Report of the workshop ‘Sustainable beef quality for Europe II – A workshop for industry and scientists’. Viandes & Produits Carnés, 33, VPC‐2017‐2033‐2012‐2018.
Guzek, D, Glabska, D, Gutkowska, K, Wierzbicki, J, Wozniak, A and Wierzbicka, A 2015. Influence of cut and thermal treatment on consumer perception of beef in polish trials. Pakistan Journal of Agricultural Sciences 52, 533538.
Hocquette, JF, Botreau, R, Legrand, I, Polkinghorne, R, Pethick, DW, Lherm, M, Picard, B, Doreau, M and Terlouw, EMC 2014. Win-win strategies for high beef quality, consumer satisfaction, and farm efficiency, low environmental impacts and improved animal welfare. Animal Production Science 54, 15371548.
Hocquette, JF, Legrand, I, Jurie, C, Pethick, DW and Micol, D 2011. Perception in France of the Australian system for the prediction of beef quality (Meat Standards Australia) with perspectives for the European beef sector. Animal Production Science 51, 3036.
Hunt, MR, Legako, JF, Dinh, TTN, Garmyn, AJ, O’Quinn, TG, Corbin, CH, Rathmann, RJ, Brooks, JC and Miller, MF 2016. Assessment of volatile compounds, neutral and polar lipid fatty acids of four beef muscles from USDA Choice and Select graded carcasses and their relationships with consumer palatability scores and intramuscular fat content. Meat Science 116, 91101.
Indurain, G, Carr, TR, Goni, MV, Insausti, K and Beriain, MJ 2009. The relationship of carcass measurements to carcass composition and intramuscular fat in Spanish beef. Meat Science 82, 155161.
Jackman, P, Sun, DW, Du, CJ and Allen, P 2009. Prediction of beef eating qualities from colour, marbling and wavelet surface texture features using homogenous carcass treatment. Pattern Recognition 42, 751763.
Jackman, P, Sun, DW, Du, CJ, Allen, P and Downey, G 2008. Prediction of beef eating quality from colour, marbling and wavelet texture features. Meat Science 80, 12731281.
Kobayashi, K, Matsui, Y, Maebuchi, Y, Toyota, T and Nakauchi, S 2010. Near infrared spectroscopy and hyperspectral imaging for prediction and visualisation of fat and fatty acid content in intact raw beef cuts. Journal of Near Infrared Spectroscopy 18, 301315.
Kukowski, AC, Maddock, RJ and Wulf, DM 2004. Evaluating consumer acceptability of various muscles from the beef chuck and rib. Journal of Animal Science 82, 521525.
Lee, S, Lohumi, S, Lim, HS, Gotoh, T, Cho, BK and Jung, S 2015. Determination of intramuscular fat content in beef using magnetic resonance imaging. Journal of the Faculty of Agriculture Kyushu University 60, 157162.
Legako, JF, Brooks, JC, O’Quinn, TG, Hagan, TDJ, Polkinghorne, R, Farmer, LJ and Miller, MF 2015. Consumer palatability scores and volatile beef flavor compounds of five USDA quality grades and four muscles. Meat Science 100, 291300.
Legrand, I, Hocquette, JF, Polkinghorne, RJ and Pethick, DW 2013. Prediction of beef eating quality in France using the Meat Standards Australia system. Animal 7, 524529.
Liu, YL, Lyon, BG, Windham, WR, Realini, CE, Pringle, TDD and Duckett, S 2003. Prediction of color, texture, and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy. A feasibility study. Meat Science 65, 11071115.
Mateescu, RG, Oltenacu, PA, Garmyn, AJ, Mafi, GG and VanOverbeke, DL 2016. Strategies to predict and improve eating quality of cooked beef using carcass and meat composition traits in Angus cattle. Journal of Animal Science 94, 21602171.
Meisinger, JL, James, JM and Calkins, CR 2006. Flavor relationships among muscles from the beef chuck and round. Journal of Animal Science 84, 28262833.
Mullen, AM and Troy, DJ 2005. Current and emerging technologies for the prediction of meat quality. In Proceedings of the 55th Annual Meeting of the European-Association-of-Animal-Production, 5–9 September 2004, Bled, Slovenia, pp. 179–190.
Naganathan, GK, Cluff, K, Samal, A, Calkins, CR, Jones, DD, Lorenzen, CL and Subbiah, J 2015. A prototype on-line AOTF hyperspectral image acquisition system for tenderness assessment of beef carcasses. Journal of Food Engineering 154, 19.
Naganathan, GK, Grimes, LM, Subbiah, J, Calkins, CR, Samal, A and Meyer, GE 2008. Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Computers and Electronics in Agriculture 64, 225233.
Navajas, EA, Glasbey, CA, Fisher, AV, Ross, DW, Hyslop, JJ, Richardson, RI, Simm, G and Roehe, R 2010. Assessing beef carcass tissue weights using computed tomography spirals of primal cuts. Meat Science 84, 3038.
Oliver, MA, Nute, GR, Furnols, MFI, San Julian, R, Campo, MM, Sanudo, C, Caneque, V, Guerrero, L, Alvarez, I, Diaz, MT, Branscheid, W, Wicke, M and Montossi, F 2006. Eating quality of beef, from different production systems, assessed by German, Spanish and British consumers. Meat Science 74, 435442.
O’Quinn, TG, Brooks, JC and Miller, MF 2015. Consumer assessment of beef tenderloin steaks from various USDA quality grades at 3 degrees of doneness. Journal of Food Science 80, S444S449.
Organisation for Economic Co-Operation and Development 2017. Meat consumption (indicator). Retrieved on 23 May 2017 from https://doi.org//10.1787/fa290fd0-en
Park, B, Chen, YR, Hruschka, WR, Shackelford, SD and Koohmaraie, M 2001. Principal component regression of near-infrared reflectance spectra for beef tenderness prediction. Transactions of the ASAE 44, 609615.
Polkinghorne, R 2005. Does variation between muscles in sensory traits preclude carcass grading as a useful tool for consumers? In Proceedings of the 50th International Congress of Meat Science and Technology, 8–13 August 2004, Helsinki, Finland, p. 18.
Polkinghorne, R 2007. Targeting the consumer demand for beef in Australia, Japan, Korea, Ireland and the United States. In Proceedings of the 60th Reciprocal Meat Conference, Brookings, SD, USA. Retrieved on 24 April 2018 from https://www.meatscience.org/docs/default-source/publications-resources/rmc/2007/cc1-01.pdf?sfvrsn=77a6bab3_4
Polkinghorne, RJ, Nishimura, T, Neath, KE and Watson, R 2011. Japanese consumer categorisation of beef into quality grades, based on Meat Standards Australia methodology. Animal Science Journal 82, 325333.
Polkinghorne, RJ and Thompson, JM 2010. Meat standards and grading A world view. Meat Science 86, 227235.
Prieto, N, Dugan, MER, Lopez-Campos, O, McAllister, TA, Aalhus, JL and Uttaro, B 2012. Near infrared reflectance spectroscopy predicts the content of polyunsaturated fatty acids and biohydrogenation products in the subcutaneous fat of beef cows fed flaxseed. Meat Science 90, 4351.
Prieto, N, Lopez-Campos, O, Zijlstra, RT, Uttaro, B and Aalhus, JL 2014. Discrimination of beef dark cutters using visible and near infrared reflectance spectroscopy. Canadian Journal of Animal Science 94, 445454.
Prieto, N, Navajas, EA, Richardson, RI, Ross, DW, Hyslop, JJ, Simm, G and Roehe, R 2010. Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography. Meat Science 86, 770779.
Prieto, N, Ross, DW, Navajas, EA, Nute, GR, Richardson, RI, Hyslop, JJ, Simm, G and Roehe, R 2009. On-line application of visible and near infrared reflectance spectroscopy to predict chemical-physical and sensory characteristics of beef quality. Meat Science 83, 96103.
Prieto, N, Ross, DW, Navajas, EA, Richardson, RI, Hyslop, JJ, Simm, G and Roehe, R 2011. Online prediction of fatty acid profiles in crossbred Limousin and Aberdeen Angus beef cattle using near infrared reflectance spectroscopy. Animal 5, 155165.
Puente, J, Samanta, SS and Bruce, HL 2016. Instrumental meat quality characteristics associated with aged m. longissimus thoracis from the four Canadian beef quality grades. Canadian Journal of Animal Science 96, 143153.
Reis, MM and Rosenvold, K 2014. Early on-line classification of beef carcasses based on ultimate pH by near infrared spectroscopy. Meat Science 96, 862869.
Rhee, MS, Wheeler, TL, Shackelford, SD and Koohmaraie, M 2004. Variation in palatability and biochemical traits within and among eleven beef muscles. Journal of Animal Science 82, 534550.
Roehe, R, Ross, D, Duthie, C-A, Lambe, N, Anderson, C, Broadbent, C, Bunger, L, England, S, Picken, A, Robertson, R, Peacock, A, Green, A, Hinz, A, Gilchrist, J, Richardson, RI, Nath, M and Glasbey, C 2014. Research towards an Integrated Measurement of Meat Eating Quality (IMEQ). Final Report 2013. Retrieved on 24 April 2018 from https://www.sruc.ac.uk/download/downloads/id/1875/imeq_report.pdf
Sarzeaud, P, Dimitriadou, A and Zjalic, M 2008. EU beef farming systems and CAP regulations. EAAP Technical Series, volume 9, 122 pp. Wageningen Academic Publishers, Wageningen.
Sierra, V, Aldai, N, Castro, P, Osoro, K, Coto-Montes, A and Olivan, M 2008. Prediction of the fatty acid composition of beef by near infrared transmittance spectroscopy. Meat Science 78, 248255.
Smith, GC, Tatum, JD and Belk, KE 2008. International perspective: characterisation of United States Department of Agriculture and Meat Standards Australia systems for assessing beef quality. Australian Journal of Experimental Agriculture 48, 14651480.
Su, HW, Sha, K, Zhang, L, Zhang, Q, Xu, YL, Zhang, R, Li, HP and Sun, BZ 2014. Development of near infrared reflectance spectroscopy to predict chemical composition with a wide range of variability in beef. Meat Science 98, 110114.
Tedford, JL, Rodas-Gonzalez, A, Garmyn, AJ, Brooks, JC, Johnson, BJ, Starkey, JD, Clark, GO, Derington, AJ, Collins, JA and Miller, MF 2014. U. S. consumer perceptions of U. S. and Canadian beef quality grades. Journal of Animal Science 92, 36853692.
Thompson, J 2002. Managing meat tenderness. Meat Science 62, 295308.
Venel, C, Mullen, AM, Downey, G and Troy, DJ 2001. Prediction of tenderness and other quality attributes of beef by near infrared reflectance spectroscopy between 750 and 1100 nm; further studies. Journal of Near Infrared Spectroscopy 9, 185198.
Verbeke, W, Perez-Cueto, FJA, de Barcellos, MD, Krystallis, A and Grunert, KG 2010a. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Science 84, 284292.
Verbeke, W, Van Wezemael, L, de Barcellos, MD, Kugler, JO, Hocquette, J-F, Ueland, O and Grunert, KG 2010b. European beef consumers’ interest in a beef eating-quality guarantee insights from a qualitative study in four EU countries. Appetite 54, 289296.
Vickers, M, Brown, C and Ford, L 2017. Beef production from the dairy herd. Retrieved on 24 April 2018 from http://www.eblex.org.uk/wp/wp-content/uploads/2013/06/brp_b_beefbbrpmanual_4_beef_production_from_the_dairy_herd280613.pdf
Wu, D and Sun, DW 2013. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review - part I: fundamentals. Innovative Food Science & Emerging Technologies 19, 114.
Wu, JH, Peng, YK, Chen, JJ, Wang, W, Gao, XD and Huang, H 2010. Study of spatially resolved hyperspectral scattering images for assessing beef quality characteristics. Spectroscopy and Spectral Analysis 30, 18151819.
Xiong, ZJ, Sun, DW, Pu, HB, Gao, WH and Dai, Q 2017. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: a review. Critical Reviews in Food Science and Nutrition 57, 755768.

Keywords

Type Description Title
WORD
Supplementary materials

Farmer and Farrell supplementary material
Tables S1 and S2

 Word (39 KB)
39 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed