Skip to main content Accessibility help
×
Home

Review: Analysis of the process and drivers for cellular meat production

  • R. D. Warner (a1)

Abstract

Cell-based meat, also called ‘clean’, lab, synthetic or in vitro meat, has attracted much media interest recently. Consumer demand for cellular meat production derives principally from concerns over environment and animal welfare, while secondary considerations include consumer and public health aspects of animal production, and food security. The present limitations to cellular meat production include the identification of immortal cell lines, availability of cost-effective, bovine-serum-free growth medium for cell proliferation and maturation, scaffold materials for cell growth, scaling up to an industrial level, regulatory and labelling issues and at what stage mixing of myo-, adipo- and even fibrocytes can potentially occur. Consumer perceptions that cell-based meat production will result in improvements to animal welfare and the environment have been challenged, with the outcome needing to wait until the processes used in cell-based meat are close to a commercial reality. Challenges for cell-based meat products include the simulation of nutritional attributes, texture, flavour and mouthfeel of animal-derived meat products. There is some question over whether consumers will accept the technology, but likely there will be acceptance of cell-based meat products, in particular market segments. Currently, the cost of growth media, industry scale-up of specific components of the cell culture process, intellectual property sharing issues and regulatory hurdles mean that it will likely require an extended period for cellular meat to be consistently available in high-end restaurants and even longer to be available for the mass market. The progress in plant-based meat analogues is already well achieved, with products such as the ImpossibleTM Burger and other products already available. These developments may make the development of cellular meat products obsolete. But the challenges remain of mimicking not only the nutritional attributes, flavour, shape and structure of real meat, but also the changes in regulation and labelling.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review: Analysis of the process and drivers for cellular meat production
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review: Analysis of the process and drivers for cellular meat production
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review: Analysis of the process and drivers for cellular meat production
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Aaslyng, MD and Barton-Gade, PA 2001. Low stress pre-slaughter handling: effect of lairage time on the meat quality of pork. Meat Science 57, 8792.
Arihara, K 2006. Strategies for designing novel functional meat products. Meat Science 74, 219229.
Banis, D 2018. How Israel became the most promising land for clean meat. Retrieved on 18 July 2019 from https://www.forbes.com/sites/davidebanis/2018/10/17/how-israel-became-the-most-promising-land-for-clean-meat/#699752f751cb
Bhat, ZF, Kumar, S and Bhat, HF 2017. In vitro meat: a future animal-free harvest. Critical Reviews in Food Science and Nutrition 57, 782789.
Bhat, ZF, Kumar, S and Fayaz, H 2015. In vitro meat production: challenges and benefits over conventional meat production. Journal of Integrative Agriculture 14, 241248.
Bhat, ZF, Morton, JD, Mason, SL, Bekhit, AE-DA and Bhat, HF 2019. Technological, regulatory, and ethical aspects of in vitro meat: a future slaughter-free harvest. Comprehensive Reviews in Food Science and Food Safety 18, 11921208.
Blokhuis, HJ, Veissier, I, Miele, M and Jones, B 2010. The Welfare Quality® project and beyond: safeguarding farm animal well-being. Acta Agriculturae Scandinavica, Section A – Animal Science 60, 129140.
Boffey, D 2019. ‘Veggie discs’ to replace veggie burgers in EU crackdown on food labels. Retrieved on 18 July 2019 from https://www.theguardian.com/food/2019/apr/04/eu-to-ban-non-meat-product-labels-veggie-burgers-and-vegan-steaks.
Bonny, SPF, Gardner, GE, Pethick, DW and Hocquette, J-F 2015. What is artificial meat and what does it mean for the future of the meat industry? Journal of Integrative Agriculture 14, 255263.
Bonny, SPF, Gardner, GE, Pethick, DW and Hocquette, J-F 2017. Artificial meat and the future of the meat industry. Animal Production Science 57, 22162223.
Bryant, CJ and Barnett, JC 2019. What’s in a name? Consumer perceptions of in vitro meat under different names. Appetite 137, 104113.
Buller, H, Blokhuis, H, Jensen, P and Keeling, L 2018. Towards farm animal welfare and sustainability. Animals 8, 81.
Burton, NM, Vierck, Jf, Krabbenhoft, L, Bryne, K and Dodson, MV 2000. Methods for animal satellite cell culture under a variety of conditions. Methods in Cell Science 22, 5161.
Carlsson, F, Frykblom, P and Lagerkvist, CJ 2007. Consumer willingness to pay for farm animal welfare: mobile abattoirs versus transportation to slaughter. European Review of Agricultural Economics 34, 321344.
Cederberg, C, Henriksson, M and Berglund, M 2013. An LCA researcher’s wish list – data and emission models needed to improve LCA studies of animal production. Animal 7, 212219.
Cliceri, D, Spinelli, S, Dinnella, C, Prescott, J and Monteleone, E 2018. The influence of psychological traits, beliefs and taste responsiveness on implicit attitudes toward plant- and animal-based dishes among vegetarians, flexitarians and omnivores. Food Quality and Preference 68, 276291.
Cornish, A, Raubenheimer, D and McGreevy, P 2016. What we know about the public’s level of concern for farm animal welfare in food production in developed countries. Animals 6, 74.
Crosson, P, Shalloo, L, O’Brien, D, Lanigan, GJ, Foley, PA, Boland, TM and Kenny, DA 2011. A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Animal Feed Science and Technology 166–167, 2945.
Daly, HE 1990. Toward some operational principles of sustainable development. Ecological Economics 2, 16.
Datar, I and Betti, M 2010. Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies 11, 1322.
Doran-Browne, N, Wootton, M, Taylor, C and Eckard, R 2018. Offsets required to reduce the carbon balance of sheep and beef farms through carbon sequestration in trees and soils. Animal Production Science 58, 16481655.
Edwards, LN, Grandin, T, Engle, TE, Ritter, MJ, Sosnicki, AA, Carlson, BA and Anderson, DB 2010. The effects of pre-slaughter pig management from the farm to the processing plant on pork quality. Meat Science 86, 938944.
Eriksen, MS, Rødbotten, R, Grøndahl, AM, Friestad, M, Andersen, IL and Mejdell, CM 2013. Mobile abattoir versus conventional slaughterhouseimpact on stress parameters and meat quality characteristics in Norwegian lambs. Applied Animal Behaviour Science 149, 2129.
FAO 2011. Global food losses and food waste – extent, causes and prevention. Retrieved on 18 July 2019 from https://www.fao.org/3/mb060e/mb060e00.htm.
FAO 2012. World agriculture towards 2030/2050: the 2012 revision. Retrieved on 18 July 2019 from https://www.fao.org/docrep/016/ap106e/ap106e.pdf.
FAO 2018. OECD-FAO Agricultural outlook 2018-2027 - Meat. Retrieved on 18 July 2019 from https://www.agri-outlook.org/commodities/Agricultural-Outlook-2018-Meat.pdf.
Farouk, MM 2013. Advances in the industrial production of halal and kosher red meat. Meat Science 95, 805820.
Farouk, MM, Pufpaff, KM and Amir, M 2016. Industrial halal meat production and animal welfare: a review. Meat Science 120, 6070.
Ferguson, DM and Warner, RD 2008. Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Science 80, 1219.
Food-Standards-Code-Australia 2011. Hormonal growth promotants in beef In FSANZ, Sydney, Australia.
Frank, D, Ball, AJ, Hughes, JM, Krishnamurthy, R, Piyasiri, U, Stark, JL, Watkins, PE and Warner, R 2016. Sensory and objective flavor characteristics of Australian marbled beef: the influence of intramuscular fat, feed and breed. Journal of Agricultural and Food Chemistry 64, 42994311.
Gatti, M 2019. I’m honestly fed up with all the bad news so i illustrated the best news of 2018 (and recent years) #49. Retrieved on 18 July 2019 from https://www.boredpanda.com/illustration-good-positive-news-2018-mauro-gatti/?utm_source=google&utm_medium=organic&utm_campaign=organic.
Grandin, T 1997. Assessment of stress during handling and transport. Journal of Animal Science 75, 249257.
Grandin, T 1998. Handling and welfare of livestock in slaughter plants. In Livestock Handling and transport (ed. Grandin, T), pp. 289311. CAB International, Oxon, UK.
Grand-View-Research 2018. Meat substitutes market size, share & trends analysis report by product (Tofu, Seitan, Tempeh, Quorn), by raw material (soy-based, wheat-based, mycoprotein), by region, and segment forecasts, 2012–2022. Retrieved on 18 July 2019 from https://www.grandviewresearch.com/industry-analysis/meat-substitutes-market
Gussow, JD and Clancy, KL 1986. Dietary guidelines for sustainability. Journal of Nutrition Education 18, 15.
Hoang, YTH and Vu, ATL 2016. Sodium benzoate and potassium sorbate in processed meat products collected in Ho Chi Minh City, Vietnam. International Journal on Advanced Science, Engineering and Information Technology 6, 477482.
Hocquette, A, Lambert, C, Sinquin, C, Peterolff, L, Wagner, Z, Bonny, SPF, Lebert, A and Hocquette, J-F 2015. Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry. Journal of Integrative Agriculture 14, 273284.
Hocquette, J-F 2015. Is it possible to save the environment and satisfy consumers with artificial meat? Journal of Integrative Agriculture 14, 206207.
Hocquette, J-F 2016. Is in vitro meat the solution for the future? Meat Science 120, 167176.
Hocquette, JF and Chatellier, V 2011. Prospects for the European beef sector over the next 30 years. Animal Frontiers 1, 2028.
Hopkins, PD 2015. Cultured meat in western media: the disproportionate coverage of vegetarian reactions, demographic realities, and implications for cultured meat marketing. Journal of Integrative Agriculture 14, 264272.
Jochems, CEA, van der Valk, JBF, Stafleu, FR and Baumans, V 2002. The use of fetal bovine serum: ethical or scientific problem? Alternatives to Laboratory Animals 30, 219227.
Jones, AD, Hoey, L, Blesh, J, Miller, L, Green, A and Shapiro, LF 2016. A systematic review of the measurement of sustainable diets. Advances in Nutrition 7, 641664.
Jorquera-Chavez, M, Fuentes, S, Dunshea, FR, Jongman, EC and Warner, RD 2019. Computer vision and remote sensing to assess physiological responses of cattle to pre-slaughter stress, and its impact on beef quality: a review. Meat Science 156, 1122.
Kadim, IT, Mahgoub, O, Baqir, S, Faye, B and Purchas, R 2015. Cultured meat from muscle stem cells: a review of challenges and prospects. Journal of Integrative Agriculture 14, 222233.
Kinley, RD, de Nys, R, Vucko, MJ, Machado, L and Tomkins, NW 2016. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Animal Production Science 56, 282289.
Koohmaraie, M, Whipple, G, Kretchmar, DH, Crouse, JD and Mersmann, HJ 1991. Postmortem proteolysis in longissimus muscle from beef, lamb, and pork carcasses. Journal of Animal Science 69, 617624.
Kosnik, PE, Dennis, RG and Vandenburgh, H 2003. Tissue engineering skeletal muscle. In Functional tissue engineering (eds. Guilak, F, Butler, DL and Goldstein, SA), pp. 377392. Springer-Verlag, New York, NY, USA.
Langelaan, MLP, Boonen, KJM, Polak, RB, Baaijens, FPT, Post, MJ and van der Schaft, DWJ 2010. Meet the new meat: tissue engineered skeletal muscle. Trends in Food Science & Technology 21, 5966.
Lipinski, B, Hanson, R, Lomax, J, kitinoja, L, Waite, R and Searchinger, T 2013. Reducing food loss and waste - working paper. In Working Paper, Installment 2 of Creating a Sustainable Food Future. World Resources Institute, Washington, DC, USA. Available online at https://www.worldresourcesreport.org.
Lynch, J and Pierrehumbert, R 2019. Climate impacts of cultured meat and beef cattle. Frontiers in Sustainable Food Systems 3, doi: 10.3389/fsufs.2019.00005.
MacLeod, M, Gerber, P, Mottet, A, Tempio, G, Falcucci, A, Opio, C, Vellinga, T, Henderson, B and Steinfeld, H 2013. Greenhouse gas emissions from pig and chicken supply chains. A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Mann, NJ 2018. A brief history of meat in the human diet and current health implications. Meat Science 144, 169179.
Mattick, CS, Landis, AE and Allenby, BR 2015a. A case for systemic environmental analysis of cultured meat. Journal of Integrative Agriculture 14, 249254.
Mattick, CS, Landis, AE, Allenby, BR and Genovese, NJ 2015c. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environmental Science & Technology 49, 1194111949.
Mattick, CS, Wetmore, JM and Allenby, BR 2015b. An anticipatory social assessment of factory-grown meat. IEEE Technology and Society Magazine 34, 5664.
McAuliffe, GA, Takahashi, T and Lee, MRF 2018. Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products. Food and Energy Security 7, e00143.
Moritz, MSM, Verbruggen, SEL and Post, MJ 2015. Alternatives for large-scale production of cultured beef: a review. Journal of Integrative Agriculture 14, 208216.
Mouly, V, Aamiri, A, Bigot, A, Cooper, RN, Di Donna, S, Furling, D, Gidaro, T, Jacquemin, V, Mamchaoui, K, Negroni, E, Périé, S, Renault, V, Silva-Barbosa, SD and Butler-Browne, GS 2005. The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiologica Scandinavica 184, 315.
Nelson, ME, Hamm, MW, Hu, FB, Abrams, SA and Griffin, TS 2016. Alignment of healthy dietary patterns and environmental sustainability: a systematic review. Advances in Nutrition 7, 10051025.
Orzechowski, A 2015. Artificial meat? Feasible approach based on the experience from cell culture studies. Journal of Integrative Agriculture 14, 217221.
Phelan, K and May, KM 2015. Basic techniques in mammalian cell tissue culture. Current Protocols in Cell Biology 66, 1.1.11.1.22.
Piazza, J, Ruby, MB, Loughnan, S, Luong, M, Kulik, J, Watkins, HM and Seigerman, M 2015. Rationalizing meat consumption. The 4Ns. Appetite 91, 114128.
Pickering, NK, Oddy, VH, Basarab, J, Cammack, K, Hayes, B, Hegarty, RS, Lassen, J, McEwan, JC, Miller, S, Pinares-Patiño, CS and de Haas, Y 2015. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants. Animal 9, 14311440.
Piper, K 2019. The lab-grown meat industry just got the regulatory oversight it’s been begging for. In Vox. Retrieved on 18 July 2019 from https://www.vox.com/future-perfect/2019/3/9/18255806/fda-usda-lab-grown-meat-cell-based-vegan-vegetarian.
Post, M and Hocquette, JF 2017. New sources of animal proteins: cultured meat. In Meat quality aspects: from genes to ethics (ed. Purslow, P), pp. 425441. Woodhead Publishing – Elsevier, Duxford, UK.
Post, MJ 2012. Cultured meat from stem cells: challenges and prospects. Meat Science 92, 297301.
Purslow, PP, Oiseth, S, Hughes, J and Warner, RD 2016. The structural basis of cooking loss in beef: variations with temperature and ageing. Food Research International 89, 731748.
Ranganathan, J, Waite, R, Searcchinger, T and Hanson, C 2018. How to Sustainably Feed 10 Billion People by 2050, in 21 Charts. World Research Institute, Washington DC, USA. Retrieved on August 8 2019 from https://www.wri.org/blog/2018/12/how-sustainably-feed-10-billion-people-2050-21-charts.
Renzini, A, Benedetti, A, Bouché, M, Silvestroni, L, Adamo, S and Moresi, V 2018. Culture conditions influence satellite cell activation and survival of single myofibers. European Journal of Translational Myology 28, 167174.
Ritchie, H and Roser, M 2017. Meat and seafood production & consumption. Retrieved on 18 July 2019 from https://ourworldindata.org/meat-and-seafood-production-consumption.
Rollins, B and Rumley, R 2019. The Regulation of ‘Cell-Cultured Meat’. Retrieved on 18 July 2019 from https://nationalaglawcenter.org/wp-content/uploads/assets/articles/rollins-rumley-Cell-cultured-meat.pdf.
Sala, S, Anton, A, McLaren, SJ, Notarnicola, B, Saouter, E and Sonesson, U 2017. In quest of reducing the environmental impacts of food production and consumption. Journal of Cleaner Production 140, 387398.
Sanders, ER 2012. Aseptic laboratory techniques: plating methods, JoVE, e3064. Retrieved on 18 July 2019 from https://www.jove.com/video/3064.
Scollan, ND, Greenwood, PL, Newbold, CJ, Ruiz, DRY, Shingfield, KJ, Wallace, RJ and Hocquette, JF 2010. Future research priorities for animal production in a changing world. Animal Production Science 51, 15.
Smetana, S, Mathys, A, Knoch, A and Heinz, V 2015. Meat alternatives: life cycle assessment of most known meat substitutes. International Journal of Life Cycle Assessment 20, 1254.
Soussana, JF, Tallec, T and Blanfort, V 2010. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4, 334350.
Specht, EA, Welch, DR, Rees Clayton, EM and Lagally, CD 2018. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochemical Engineering Journal 132, 161168.
Stephens, N, Di Silvio, L, Dunsford, I, Ellis, M, Glencross, A and Sexton, A 2018. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology 78, 155166.
Stephens, N, Sexton, AE and Driessen, C 2019. Making sense of making meat: key moments in the first 20 years of tissue engineering muscle to make food. Frontiers in Sustainable Food Systems 3, doi: 10.3389/fsufs.2019.00045.
Sun, J, Bai, M, Shen, J, Griffith, DWT, Denmead, OT, Hill, J, Lam, SK, Mosier, AR and Chen, D 2016. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens. Science of the Total Environment 565, 148154.
Tatsumi, R, Sheehan, SM, Iwasaki, H, Hattori, A and Allen, RE 2001. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Experimental Cell Research 267, 107114.
Toldra, F, Aristoy, MC, Mora, L and Reig, M 2012. Innovations in value-addition of edible meat by-products. Meat Science 92, 290296.
Toldrá, F, Mora, L and Reig, M 2016. New insights into meat by-product utilization. Meat Science 120, 5459.
Tuomisto, HL and Teixeira de Mattos, MJ 2011. Environmental impacts of cultured meat production. Environmental Science & Technology 45, 61176123.
van der Weele, C, Feindt, P, Jan van der Goot, A, van Mierlo, B and van Boekel, M 2019. Meat alternatives: an integrative comparison. Trends in Food Science & Technology 88, 505512.
Van Der Weele, C and Tramper, J 2014. Cultured meat: every village its own factory. Trends in Biotechnology 32, 294296.
Van Eelen, WF 2007. Industrial production of meat using cell culture methods. US Patent 7,270,829 B2.
Vandenburgh, HH and Karlisch, P 1989. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cellular and Developmental Biology 25, 607616.
Verbeke, W, Sans, P and Van Loo, EJ 2015. Challenges and prospects for consumer acceptance of cultured meat. Journal of Integrative Agriculture 14, 285294.
Voisinet, BD, Grandin, T, O’Connor, SF, Tatum, JD and Deesing, MJ 1997. Bos indicus-cross feedlot cattle with excitable temperaments have tougher meat and a higher incidence of borderline dark cutters. Meat Science 46, 367377.
Warner, RD, Ferguson, DM, Cottrell, JJ and Knee, BW 2007. Acute stress induced by the preslaughter use of electric prodders causes tougher beef meat. Australian Journal of Experimental Agriculture 47, 782788.
Warner, RD, Greenwood, PL, Pethick, DW and Ferguson, DM 2010. Genetic and environmental effects on meat quality. Meat Science 86, 171183.
Watkins, PJ, Frank, D, Singh, TK, Young, OA and Warner, RD 2013. Sheepmeat flavor and the effect of different feeding systems: a review. Journal of Agricultural and Food Chemistry 61, 35613579.
Waughray, D 2018. Meat: the future. Time for a protein portfolio to meet tomorrows demand – A White Paper. Retrieved on 18 July 2019 from https://www3.weforum.org/docs/White_Paper_Meat_the_Future_Time_Protein_Portfolio_Meet_Tomorrow_Demand_report_2018.pdf.
WHO 2008. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food and Nutrition Bulletin 29, S238S244.
Wiedemann, S, Davis, R, McGahan, E, Murphy, C and Redding, M 2017a. Resource use and greenhouse gas emissions from grain-finishing beef cattle in seven Australian feedlots: a life cycle assessment. Animal Production Science 57, 11491162.
Wiedemann, SG, McGahan, EJ and Murphy, CM 2017b. Resource use and environmental impacts from Australian chicken meat production. Journal of Cleaner Production 140, 675684.
Wiedemann, SG, McGahan, EJ and Murphy, CM 2018. Environmental impacts and resource use from Australian pork production determined using life cycle assessment. 2. Energy, water and land occupation. Animal Production Science 58, 11531163.
Wiedemann, S, McGahan, E, Murphy, C and Yan, M 2016a. Resource use and environmental impacts from beef production in eastern Australia investigated using life cycle assessment. Animal Production Science 56, 882894.
Wiedemann, SG, Yan, M-J and Murphy, CM 2016b. Resource use and environmental impacts from Australian export lamb production: a life cycle assessment. Animal Production Science 56, 10701080.
Willett, W, Rockström, J, Loken, B, Springmann, M, Lang, T, Vermeulen, S, Garnett, T, Tilman, D, DeClerck, F, Wood, A, Jonell, M, Clark, M, Gordon, LJ, Fanzo, J, Hawkes, C, Zurayk, R, Rivera, JA, De Vries, W, Majele Sibanda, L, Afshin, A, Chaudhary, A, Herrero, M, Agustina, R, Branca, F, Lartey, A, Fan, S, Crona, B, Fox, E, Bignet, V, Troell, M, Lindahl, T, Singh, S, Cornell, SE, Srinath Reddy, K, Narain, S, Nishtar, S and Murray, CJL 2019. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393, 447492.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed