Skip to main content Accessibility help

The response of weaned piglets to dietary valine and leucine

  • F. Meyer (a1), C. Jansen van Rensburg (a1) and R. M. Gous (a2)


Valine (Val) is considered to be the fifth-limiting amino acid in a maize–soyabean meal diet for pigs. Excess leucine (Leu) levels often occur in commercial diets, which may attenuate the effect of Val deficiency because of an increased oxidation of Val. The objective of the present experiment was to determine the effect of increasing concentrations of Leu on the response of young piglets to dietary Val. In all, 75 Large White×Landrace entire male pigs, 44 days of age and with a mean starting weight of 13.5 kg, were used. Three of these were sacrificed at the start to determine their mean initial chemical composition. A summit feed first limiting in Val was serially diluted with a non-protein diluent to produce a series of five digestible Val concentrations of 11.9, 10.1, 8.3, 6.6 and 4.8 g/kg, with a sixth treatment being added to test that the feeds were limiting in Val. Three identical Val series, each with six levels of Val, were supplemented with increasing amounts of Leu (23, 45 and 67 g/kg), thus 18 treatments in total. All pigs were killed at the end of the trial after 18 days for analysis of water, protein, lipid and ash in the carcass. The levels of Val and Leu and their interaction significantly influenced all the measurements taken in the trial. Daily gain in liveweight, water and protein, and feed conversion efficiency all increased with dietary Val content, whereas feed intake decreased as both Val and Leu contents increased. The deleterious effect of increased Leu on feed intake and growth was more marked at lower levels of Val. Supplementing the feed with the lowest Val content with additional Val largely overcame the effect of excess Leu. The efficiency of utilisation of Val for protein growth was unaffected by the level of Leu in the feed, the primary response to excess Leu being a reduction in feed intake. An intake of around 9 g Val/day yielded maximal protein growth during the period from 44 to 62 days of age in pigs of the genotype used in this trial.


Corresponding author


Hide All
Agricultural Research Council 1981. The nutrient requirements of pigs. Commonwealth Agricultural Bureaux, Slough, UK.
Association of Official Analytical Chemists International 2000. Official methods of analysis of AOAC International, 17th edition. AOAC, Gaithersburg, MD, USA.
Baker, DH 2005. Tolerance for branched-chain amino acids in experimental animals and humans. Journal of Nutrition 135, 1585s1590s.
Barea, R, Brossard, L, Le Floc’h, N, Primot, Y, Melchior, D and van Milgen, J 2009. The standardized ileal digestible valine-to-lysine requirement ratio is at least seventy percent in post weaned piglets. Journal of Animal Science 87, 935947.
Burnham, D, Emmans, GC and Gous, RM 1992. Isoleucine requirements of the chicken: the effect of excess leucine and valine on the responses to isoleucine. British Poultry Science 33, 7187.
Dennison, C and Gous, RM 1980. Amino acid concentrations in some South African feed ingredients. South African Journal of Animal Science 10, 918.
D’Mello, JPF and Lewis, D 1970a. Amino acid interactions in chick nutrition. 2. Interrelationships between leucine, isoleucine and valine. British Poultry Science 11, 313323.
D’Mello, JPF and Lewis, D 1970b. Amino acid interactions in chick nutrition. 3. Interdependence in amino acid requirements. British Poultry Science 11, 367385.
Edmonds, MS and Baker, DH 1987. Amino acid excesses for young pigs: effects of excess methionine, tryptophan, threonine or leucine. Journal of Animal Science 64, 16641671.
EFG Software 2010. Pig growth model. Retrieved on 15 November 2015 from
Ferguson, NS, Arnold, GA, Lavers, G and Gous, RM 2000. The response of growing pigs to amino acids as influenced by environmental temperature. 1. Threonine. Animal Science 70, 287297.
Ferguson, NS, Emmans, GC and Gous, RM 1994. Preferred components for the construction of a new simulation model of growth, feed intake and nutrient requirements of growing pigs. South African Journal of Animal Science 24, 1017.
Figueroa, JL, Lewis, AJ, Miller, PS, Fischer, RL, Gomez, RS and Diedrichsen, RM 2002. Nitrogen metabolism and growth performance of gilts fed standard corn-soybean meal diets or low-crude protein, amino acid-supplemented diets. Journal of Animal Science 80, 29112919.
Fisher, C and Morris, TR 1970. The determination of the methionine requirement of laying pullets by a diet dilution technique. British Poultry Science 11, 6782.
Fisher, C, Morris, TR and Jennings, RC 1973. A model for the description and prediction of the response of laying hens to amino acid intake. British Poultry Science 14, 469484.
Gaines, AM, Kendall, DC, Allee, GL, Usry, JL and Kerr, BJ 2011. Estimation of the standardized ileal digestible valine to lysine ratio in 13 to 32 kg pigs. Journal of Animal Science 89, 736742.
Gatnau, R, Zimmerman, DR, Nissen, SL, Wannemuehler, M and Ewan, RC 1995. Effects of excess dietary leucine and leucine catabolites on growth and immune responses in weanling pigs. Journal of Animal Science 73, 159165.
Gloaguen, M, Le Floc’h, N, Brossard, L, Barea, R, Primot, Y, Corrent, E and van Milgen, J 2011. Response of piglets to the valine content in diet in combination with the supply of other branched-chain amino acids. Animal 5, 17341742.
Gous, RM and Morris, TR 1985. Evaluation of a diet dilution technique for measuring the response of broiler chickens to increasing concentrations of lysine. British Poultry Science 26, 147161.
Harper, AE 1959. Amino acid balance and imbalance. Journal of Nutrition 68, 405418.
Harper, AE, Benevenga, NJ and Wohlhueter, RM 1970. Effects of ingestion of disproportionate amounts of amino acids. Physiological Reviews 50, 428558.
Harper, AE, Miller, RH and Block, KP 1984. Branched-chain amino acid metabolism. Annual Review of Nutrition 4, 409454.
Harris, RA, Kobayashi, R, Murakami, T and Shimomura, Y 2001. Regulation of branched-chain α-keto acid dehydrogenase kinase expression in rat liver. Journal of Nutrition 131, 841845.
Henry, Y, Seve, B, Colleaux, Y, Ganier, P, Saligaut, C and Jego, P 1992. Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs, in relation to plasma free amino acids and hypothalamic serotonin. Journal of Animal Science 70, 18731877.
Kyriazakis, I and Emmans, GC 1992a. The effects of varying protein and energy intakes on the growth and body composition of pigs. 1. The effects of energy intake at constant, high protein intake. British Journal of Nutrition 68, 603613.
Kyriazakis, I and Emmans, GC 1992b. The effects of varying protein and energy intakes on the growth and body composition of pigs. 2. The effects of varying both energy and protein intake. British Journal of Nutrition 68, 615625.
Landgraf, S, Susenbeth, A, Knap, PW, Looft, H, Plastow, GS, Kalm, E and Roehe, R 2006. Developments of carcass cuts, organs, body tissues and chemical body composition during growth of pigs. Animal Science 82, 889899.
Langer, S and Fuller, MF 2000. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on nitrogen retention and amino acid utilization. British Journal of Nutrition 83, 4348.
Le Bellego, L and Noblet, J 2002. Performance and utilization of dietary energy and amino acids in piglets fed low protein diets. Livestock Production Science 76, 4558.
Lewis, AJ and Nishimura, N 1995. Valine requirement of the finishing pig. Journal of Animal Science 73, 23152318.
Liu, XT, Ma, WF, Zeng, XF, Xie, CY, Thacker, PA, Htoo, JK and Qiao, SY 2015. Estimation of the standardized ileal digestible valine to lysine ratio required for 25- to 120-kilogram pigs fed low crude protein diets supplemented with crystalline amino acids. Journal of Animal Science 93, 47614773.
Mavromichalis, I, Kerr, BJ, Parr, TM, Albin, DM, Gabert, VM and Baker, DH 2001. Valine requirement of nursery pigs. Journal of Animal Science 79, 12231229.
McNab, JM and Fisher, C 1984. An assay for true and apparent metabolisable energy. In Proceedings of the XVIIth World’s Poultry Congress, 8–12 August 1984, Helsinki, Finland, pp. 374–376.
Millet, S, Aluwé, M, Ampe, B and De Campeneere, S 2015. Interaction between amino acids on the performances of individually housed piglets. Journal of Animal Physiology and Animal Nutrition 99, 230236.
Nemechek, JE, Tokach, MD, Dritz, SS, Goodband, RD and DeRouchey, JM 2014. Evaluation of standardized ileal digestible valine:lysine, total lysine:crude protein, and replacing fish meal, meat and bone meal, and poultry byproduct meal with crystalline amino acids on growth performance of nursery pigs from seven to twelve kilograms. Journal of Animal Science 92, 15481561.
Peganova, S and Eder, K 2003. Interactions of various supplies of isoleucine, valine, leucine and tryptophan on the performance of laying hens. Poultry Science 82, 100105.
Smith, TK and Austic, RE 1978. The branched-chain amino acid antagonism in chicks. Journal of Nutrition 108, 11801191.
Van Soest, J, Robertson, JB and Lewis, BA 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.
Whittemore, CT 1998. The science and practice of pig production. Blackwell Science Ltd, Oxford, UK.
Wiltafsky, MK, Pfaffl, MW and Roth, FX 2010. The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs. British Journal of Nutrition 103, 964976.
Zhang, H, Yin, J, Li, D, Zhou, X and Li, X 2007. Tryptophan enhances ghrelin expression and secretion associated with increased food intake and weight gain in weanling pigs. Domestic Animal Endocrinology 33, 4761.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 1751-7311
  • EISSN: 1751-732X
  • URL: /core/journals/animal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed