Skip to main content Accessibility help

Pig identification and meat traceability by multiallelic amplification fragments with multiple single nucleotide polymorphisms

  • G. D. Xing (a1), Y. N. Hu (a1), Q. Ding (a1) (a2), X. X. Wang (a3), F. Xing (a4), H. L. Wang (a1), H. L. Huan (a1) and Y. X. Xu (a2)...


Compared with conventional identification methods, DNA-based genetic approaches such as single nucleotide polymorphisms (SNPs) and satellites are much more reliable for pig identification and meat traceability. In this study, multiallelic amplification fragments with multiple SNPs, incorporating the advantages of both SNPs and microsatellites, were explored for the first time for pig identification and meat traceability. Primer pairs for multiallelic fragments and their optimal SNPs were successfully selected and used for identification of individuals from Suzhong and Duroc populations. Meanwhile, the combined panel of the above mentioned primer pairs together with their optimal SNPs for Suzhong and/or Duroc pigs were validated for identification of the hybrids (Suzhong×Duroc). Therefore, we have successfully selected multiallelic amplification fragments with multiple SNPs to identify pigs and their meat samples from Suzhong, Duroc or their hybrids. Our study demonstrates that our method is more powerful for pig identification or meat traceability than SNPs or microsatellites.


Corresponding author


Hide All

Present address: Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China.



Hide All
Britt, AG, Bell, CM, Evers, K and Paskin, R 2013. Linking live animals and products: traceability. Scientific and Technical Review 32, 571582.
Brookes, AJ 1999. The essence of SNPs. Gene 234, 177186.
Chmielewski, R and Swayne, DE 2011. Avian influenza: public health and food safety concerns. Annual Review of Food Science and Technology 2, 3757.
Dalvit, C, De Marchi, M and Cassandro, M 2007. Genetic traceability of livestock products: a review. Meat Science 77, 437449.
Disney, WT, Green, JW, Forsythe, KW, Wiemers, JF and Weber, S 2001. Benefit-cost analysis of animal identification for disease prevention and control. Scientific and Technical Review 20, 385405.
Dorne, JL, Doerge, DR, Vandenbroeck, M, Fink-Gremmels, J, Mennes, W, Knutsen, HK, Vernazza, F, Castle, L, Edler, L and Benford, D 2013. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed. Toxicology and Applied Pharmacology 270, 218229.
Fries, R and Durstewitz, G 2001. Digital DNA signatures for animal tagging. Nature Biotechnology 19, 508.
Giuffra, E, Kijas, JM, Amarger, V, Carlborg, O, Jeon, JT and Andersson, L 2000. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 17851791.
Goffaux, F, China, B, Dams, L, Clinquart, A and Daube, G 2005. Development of a genetic traceability test in pig based on single nucleotide polymorphism detection. Forensic Science International 151, 239247.
Hueston, WD 2013. BSE and variant CJD: emerging science, public pressure and the vagaries of policy-making. Preventive Veterinary Medicine 109, 179184.
Jacob, CJ, Lok, C, Morley, K and Powell, DA 2011. Government management of two media-facilitated crises involving dioxin contamination of food. Public Understanding of Science 20, 261269.
Ke, X, Hunt, S, Tapper, W, Lawrence, R, Stavrides, G, Ghori, J, Whittaker, P, Collins, A, Morris, AP, Bentley, D, Cardon, LR and Deloukas, P 2004. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Human Molecular Genetics 13, 577588.
Lindblad-Toh, K, Winchester, E, Daly, MJ, Wang, DG, Hirschhorn, JN, Laviolette, JP, Ardlie, K, Reich, DE, Robinson, E, Sklar, P, Shah, N, Thomas, D, Fan, JB, Gingeras, T, Warrington, J, Patil, N, Hudson, TJ and Lander, ES 2000. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nature Genetics 24, 381386.
Mazzanti, G, Daniele, C, Boatto, G, Manca, G, Brambilla, G and Loizzo, A 2003. New beta-adrenergic agonists used illicitly as growth promoters in animal breeding: chemical and pharmacodynamic studies. Toxicology 187, 9199.
Nicoloso, L, Crepaldi, P, Mazza, R, Ajmone-Marsan, P and Negrini, R 2013. Recent advance in DNA-based traceability and authentication of livestock meat PDO and PGI products. Recent Patents on Food, Nutrition & Agriculture 5, 918.
Peelman, LJ, Mortiaux, F, Van Zeveren, A, Dansercoer, A, Mommens, G, Coopman, F, Bouquet, Y, Burny, A, Renaville, R and Portetelle, D 1998. Evaluation of the genetic variability of 23 bovine microsatellite markers in four Belgian cattle breeds. Animal Genetics 29, 161167.
Ramos, AM, Megens, HJ, Crooijmans, RP, Schook, LB and Groenen, MA 2011. Identification of high utility SNPs for population assignment and traceability purposes in the pig using high-throughput sequencing. Animal Genetics 42, 613620.
Rodriguez-Ramirez, R, Gonzalez-Cordova, AF and Vallejo-Cordoba, B 2011. Review: Authentication and traceability of foods from animal origin by polymerase chain reaction-based capillary electrophoresis. Analytica Chimica Acta 685, 120126.
Sun, YV, Levin, AM, Boerwinkle, E, Robertson, H and Kardia, SL 2006. A scan statistic for identifying chromosomal patterns of SNP association. Genetic Epidemiology 30, 627635.
Weller, JI, Seroussi, E and Ron, M 2006. Estimation of the number of genetic markers required for individual animal identification accounting for genotyping errors. Animal Genetics 37, 387389.


Related content

Powered by UNSILO

Pig identification and meat traceability by multiallelic amplification fragments with multiple single nucleotide polymorphisms

  • G. D. Xing (a1), Y. N. Hu (a1), Q. Ding (a1) (a2), X. X. Wang (a3), F. Xing (a4), H. L. Wang (a1), H. L. Huan (a1) and Y. X. Xu (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.