Skip to main content Accessibility help

Is sequential feeding of whole wheat more efficient than ground wheat in laying hens?

  • M. Umar Faruk (a1) (a2), I. Bouvarel (a3), S. Mallet (a1), M. N. Ali (a4), H. M. Tukur (a2), Y. Nys (a1) and P. Lescoat (a1)...


The impact of sequential feeding of whole or ground wheat on the performance of layer hen was investigated using ISABROWN hens from 19 to 42 weeks of age. In addition, the effect of reduced dietary energy content of a complete diet was also investigated. Four treatments were tested. Whole wheat was alternated with a protein–mineral concentrate (balancer diet) in a treatment (sequential whole wheat: SWW), while another treatment alternated ground wheat (sequential ground wheat: SGW) with the same balancer diet. The control (C) was fed a complete layer diet conventionally. Another treatment (low energy: LE) was fed a complete diet conventionally. The diet contained lower energy (10.7 v. 11.6 MJ/kg) compared to the C. Each treatment was allocated 16 cages and each cage contained five birds. Light was provided 16 h daily (0400 to 2000 h). Feed offered was controlled (121 g/bird per day) and distributed twice (2 × 60.5 g) at 4 and 11 h after lights on. In the sequential treatment, only wheat (whole or ground) was fed during the first distribution and the balancer diet during the second distribution. Left over feed was always removed before the next distribution. The total feed intake was not different between SWW and SGW, but the two were lower than C (P < 0.05). Wheat intake was however, lowered with SGW compared to SWW (P < 0.05). Egg production and egg mass (EM) were not different between treatments. Egg weight was lower with SGW than with SWW (P < 0.05), but the two were similar to C. Body weight (BW) was lowered (P < 0.01) with SGW relative to SWW and C, SWW BW being also lower than the C one. The efficiency of egg production was increased (P < 0.01) with the SWW and SGW relative to the control. Birds fed LE had higher feed intake (P < 0.05) but they had similar egg production and EM compared to the two sequential treatments. The efficiency of feed utilization was also reduced (P < 0.01) with LE compared to SWW and SGW. It was concluded that sequential feeding is more efficient than conventional feeding. In addition, whole wheat appeared more efficient than ground wheat in terms of egg and BW.


Corresponding author


Hide All
Amerah, AM, Ravindran, V, Lentle, RG, Thomas, DG 2007. Feed particle size: implications on the digestion and performance of poultry. World’s Poultry Science Journal 63, 439455.
Blair, R, Dewar, WA, Downie, JN 1973. Egg production responses of hens given a complete mash or unground grain together with concentrate pellets. British Poultry Science 14, 373377.
Choi, JH, Namkung, H, Paik, IK 2004. Feed consumption pattern of laying hens in relation to time of oviposition. Asian-Australasian Journal of Animal Science 17, 371373.
Deaton, JW, Lott, BD, Simmons, JD 1989. Hammer mill versus roller mill grinding of corn for commercial egg layers. Poultry Science 68, 13421344.
Dezat, E, Umar Faruk, M, Lescoat, P, Roffidal, L, Chagneau, A-M, Bouvarel, I 2009. Reaction à court terme de poules pondeuses face à un mélange de blé et d’aliments de granulométrie différente. In 8èmes Journées de la Recherche Avicole, 25 et 26 mars 2009, St. Malo, France, pp. 292–296.
Fisher, C 1969. The effects of a protein deficiency on egg composition. British Poultry Science 10, 149154.
Gabriel, I, Mallet, S, Leconte, M 2003. Differences in the digestive tract characteristics of broiler chickens fed on complete pelleted diet or on whole wheat added to pelleted protein concentrate. British Poultry Science 44, 283290.
Goodlad, RA, Levi, S, Lee, CY, Mandir, N, Hodgson, H, Wright, NA 1991. Morphometry and cell proliferation in endoscopic biopsies: evaluation of a technique. Gastroenterology 101, 12351241.
Hill, KJ, Strachan, PJ 1975. Recent advances in digestive physiology of the fowl. Symposia of the Zoological Society of London 35, 12.
ISA Hendrix Genetics 2007. Nutrition management guide. Institut de Sélection Animale (ISA) A Hendrix Genetics Company, Boxmeer, The Netherlands.
Keshavarz, K 1998. Investigation on the possibility of reducing protein phosphorus and calcium requirements of laying hens by manipulation of time access to these nutrients. Poultry Science 77, 13201332.
Larbier, M, Leclercq, B 1992. Métabolisme Energétique. In Nutrition et alimentation des volailles (ed. M Larbier and B Leclercq), pp. 6390. INRA editions, Paris.
Lee, KH, Ohh, YS 2002. Effects of nutrient levels and feeding regimen of a.m. and p.m. diets on laying hen performances and feed cost. Korean Journal of Poultry Science 29, 195204.
Leeson, S, Summers, JD 1978. Voluntary food restriction by laying hens mediated through dietary self selection. British Poultry Science 19, 417424.
Melcion, J-P 2000. La granulométrie de l’aliment: principe, mesure et obtention. INRA Productions Animales 13, 8197.
Mongin, P, Sauveur, B 1974. Voluntary food and calcium intake by the laying hens. British Poultry Science 15, 349359.
Morris, TR, Gous, RM 1988. Partitioning of the response to protein between egg numbers and egg weight. British Poultry Science 29, 9399.
Nir, I, Melcion, J-P, Picard, M 1990. Effect of particle size of sorghum grains on feed intake and performance in young broilers. Poultry Science 69, 21772184.
Noirot, V, Bouvarel, I, Barrier-Guillot, B, Castaing, J, Zwick, JL, Picard, M 1998. Céréales entières pour les poulets de chair: le retour? INRA Productions Animales 11, 349357.
Novak, CL, Yakout, HM, Remus, J 2008. Response to varying dietary energy and protein with or without enzyme supplementation on leghorn performance and economics. 2. Laying period. Journal of Applied Poultry Research 17, 1733.
Nys, Y, Sauveur, B, Lacassagne, L, Mongin, P 1976. Food, calcium and water intakes by hens lit continuously from hatching. British Poultry Science 17, 351358.
Picard, M, Melcion, JP, Bouchot, C, Faure, J-M 1997. Picorage et préhensibilité des particules alimentaires chez les vollailes. INRA Productions Animales 10, 403414.
Portella, FJ, Caston, LJ, Leeson, S 1988. Apparent feed particle size preference by laying hens. Canadian Journal of Animal Science 68, 915922.
Reichmann, KG, Connor, JK 1979. The effects of meal feeding of calcium, protein and energy on production and calcium status of laying hens. British Poultry Science 20, 445452.
Robinson, D 1985. Performance of laying hens as affected by split time and split time composition dietary regimens using ground and unground cereals. British Poultry Science 26, 299309.
Sakomura, NK 2004. Modelling energy utilization in broiler breeders laying hens and broilers. Brazilian Journal of Poultry Science 6, 111.
Scanes, CG, Campbell, R, Griminger, P 1987. Control of energy balance during egg production in the laying hen. Journal of Nutrition 117, 605611.
Scott, M, McCann, M 2005. The effect of particle size and feed form on laying hen performance. Journal of Animal Science 83, 335336.
Smith, AJ 1973. Some effects of high environmental temperatures on the productivity of laying hens (a review). Tropical Animal Health and Production 5, 259271.
Sohail, SS, Bryant, MM, SrRoland, DA, Apajalahti, JHA, Pierson, EEM 2003. Influence of Avizyme 1500 on performance of commercial leghorns. Journal of Applied Poultry Research 12, 284290.
Sun, X 2004. Broiler performance and intestinal alterations when fed drug-free diets. MSc thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA.
Umar Faruk, M, Dezat, E, Bouvarel, I, Nys, Y, Lescoat, P 2008. Loose-mix and sequential feeding of mash diets with whole-wheat: effect on feed intake in laying hens. In Proceedings of the XXIII World Poultry Congress, 30 June–04 July 2008, Brisbane, Australia, p. 468.
Umar Faruk, M, Bouvarel, I, Meme, N, Rideau, N, Roffidal, L, Tukur, HM, Bastianelli, D, Nys, Y, Lescoat, P 2010. Sequential feeding using whole wheat and a separate protein–mineral concentrate improved feed efficiency in laying hen. Poultry Science 89, 785796.
Vergara, P, Ferrando, C, Jiménez, M, Fernandez, E, Gonalons, E 1989. Factors determining gastrointestinal transit time of several markers in the domestic fowl. Quarterly Journal of Experimental Physiology 74, 867874.
Weiser, MM 1973. Intestinal epithelial cell surface membrane glycoprotein synthesis. Journal of Biological Chemistry 248, 25422548.
Wu, YB, Ravindran, V, Thomas, DG, Birtles, MJ, Hendriks, WH 2004. Influence of method of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. British Poultry Science 45, 385394.
Xu, ZR, Hu, CH, Xia, MS, Zhan, XA, Wang, MQ 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science 82, 10301036.


Is sequential feeding of whole wheat more efficient than ground wheat in laying hens?

  • M. Umar Faruk (a1) (a2), I. Bouvarel (a3), S. Mallet (a1), M. N. Ali (a4), H. M. Tukur (a2), Y. Nys (a1) and P. Lescoat (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed