Skip to main content Accessibility help
×
Home

Invited review: mesenchymal progenitor cells in intramuscular connective tissue development

  • Z. G. Miao (a1) (a2), L. P. Zhang (a2) (a3), X. Fu (a2), Q. Y. Yang (a2), M. J. Zhu (a4), M. V. Dodson (a2) and M. Du (a2)...

Abstract

The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Invited review: mesenchymal progenitor cells in intramuscular connective tissue development
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Invited review: mesenchymal progenitor cells in intramuscular connective tissue development
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Invited review: mesenchymal progenitor cells in intramuscular connective tissue development
      Available formats
      ×

Copyright

Corresponding author

E-mail: min.du@wsu.edu

References

Hide All
Allen, RE, Sheehan, SM, Taylor, RG, Kendall, TL and Rice, GM 1995. Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. Journal of Cellular Physiology 165, 307312.
Archile-Contreras, AC, Cha, MC, Mandell, IB, Miller, SP and Purslow, PP 2011. Vitamins E and C may increase collagen turnover by intramuscular fibroblasts. Potential for improved meat quality. Journal of Agricultural and Food Chemistry 59, 608614.
Archile-Contreras, AC, Mandell, IB and Purslow, PP 2010. Disparity of dietary effects on collagen characteristics and toughness between two beef muscles. Meat Science 86, 491497.
Attisano, L and Wrana, JL 1996. Signal transduction by members of the transforming growth factor-beta superfamily. Cytokine & Growth Factor Reviews 7, 327339.
Balcerzak, D, Querengesser, L, Dixon, WT and Baracos, VE 2001. Coordinate expression of matrix-degrading proteinases and their activators and inhibitors in bovine skeletal muscle. Journal of Animal Science 79, 94107.
Bhatnagar, S, Panguluri, SK, Gupta, SK, Dahiya, S, Lundy, RF and Kumar, A 2010. Tumor necrosis factor-alpha regulates distinct molecular pathways and gene networks in cultured skeletal muscle cells. PLoS One 5, e13262.
Borg, TK, Klevay, LM, Gay, RE, Siegel, R and Bergin, ME 1985. Alteration of the connective tissue network of striated muscle in copper deficient rats. Journal of Molecular and Cellular Cardiology 17, 11731183.
Brack, AS, Conboy, MJ, Roy, S, Lee, M, Kuo, CJ, Keller, C and Rando, TA 2007. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807810.
Brzoska, E, Kowalewska, M, Markowska-Zagrajek, A, Kowalski, K, Archacka, K, Zimowska, M, Grabowska, I, Czerwinska, AM, Czarnecka-Gora, M, Streminska, W, Janczyk-Ilach, K and Ciemerych, MA 2012. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biology of the Cell 104, 722737.
Bugyei-Twum, A, Advani, A, Advani, SL, Zhang, Y, Thai, K, Kelly, DJ and Connelly, KA 2014. High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovascular Diabetology 13, 89.
Cho, EA and Dressler, GR 1998. TCF-4 binds beta-catenin and is expressed in distinct regions of the embryonic brain and limbs. Mechanisms of Development 77, 918.
Cisternas, P, Vio, CP and Inestrosa, NC 2014. Role of Wnt signaling in tissue fibrosis, lessons from skeletal muscle and kidney. Current Molecular Medicine 14, 510522.
Clark, IM, Swingler, TE, Sampieri, CL and Edwards, DR 2008. The regulation of matrix metalloproteinases and their inhibitors. The International Journal of Biochemistry & Cell Biology 40, 13621378.
Deheuninck, J and Luo, K 2009. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Research 19, 4757.
Denton, CP and Abraham, DJ 2001. Transforming growth factor-beta and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Current Opinion in Rheumatology 13, 505511.
Dodson, MV, Hausman, GJ, Guan, L, Du, M, Rasmussen, TP, Poulos, SP, Mir, P, Bergen, WG, Fernyhough, ME, McFarland, DC, Rhoads, RP, Soret, B, Reecy, JM, Velleman, SG and Jiang, Z 2010. Skeletal muscle stem cells from animals I. Basic cell biology. International Journal of Biological Science 6, 465474.
Dorsky, RI, Moon, RT and Raible, DW 1998. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370373.
Doumit, ME, Cook, DR and Merkel, RA 1993. Fibroblast growth factor, epidermal growth factor, insulin-like growth factors, and platelet-derived growth factor-BB stimulate proliferation of clonally derived porcine myogenic satellite cells. Journal of Cell Physiology 157, 326332.
Du, M, Huang, Y, Das, AK, Yang, Q, Duarte, MS, Dodson, MV and Zhu, M-J 2013. Meat Science And Muscle Biology Symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. Journal of Animal Science 91, 14191427.
Du, M, Yan, X, Tong, JF, Zhao, JX and Zhu, MJ 2010. Maternal obesity, inflammation, and fetal skeletal muscle development. Biology of Reproduction 82, 412.
Duarte, MS, Paulino, PV, Das, AK, Wei, S, Serao, NV, Fu, X, Harris, SM, Dodson, MV and Du, M 2013. Enhancement of adipogenesis and fibrogenesis in skeletal muscle of Wagyu compared with Angus cattle. Journal of Animal Science 91, 29382946.
Dubost, A, Micol, D, Meunier, B, Lethias, C and Listrat, A 2013a. Relationships between structural characteristics of bovine intramuscular connective tissue assessed by image analysis and collagen and proteoglycan content. Meat Science 93, 378386.
Dubost, A, Micol, D, Picard, B, Lethias, C, Andueza, D, Bauchart, D and Listrat, A 2013b. Structural and biochemical characteristics of bovine intramuscular connective tissue and beef quality. Meat Science 95, 555561.
Ghosh, J, Murphy, MO, Turner, N, Khwaja, N, Halka, A, Kielty, CM and Walker, MG 2005. The role of transforming growth factor beta1 in the vascular system. Cardiovascular Pathology 14, 2836.
Grotendorst, GR 1997. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine & Growth Factor Reviews 8, 171179.
Gupta, RK, Arany, Z, Seale, P, Mepani, RJ, Ye, L, Conroe, HM, Roby, YA, Kulaga, H, Reed, RR and Spiegelman, BM 2010. Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619623.
Gupta, RK, Mepani, RJ, Kleiner, S, Lo, JC, Khandekar, MJ, Cohen, P, Frontini, A, Bhowmick, DC, Ye, L, Cinti, S and Spiegelman, BM 2012. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metabolism 15, 230239.
Haugk, KL, Roeder, RA, Garber, MJ and Schelling, GT 1995. Regulation of muscle cell proliferation by extracts from crushed muscle. Journal of Animal Science 73, 19721981.
Hill, F 1967. The chemical composition of muscles from steers which experienced compensatory growth. Journal of the Science of Food Agriculture 18, 164166.
Holmes, A, Abraham, DJ, Sa, S, Shiwen, X, Black, CM and Leask, A 2001. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. Journal of Biological Chemistry 276, 1059410601.
Huang, Y, Das, AK, Yang, QY, Zhu, MJ and Du, M 2012a. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. PLoS One 7, e47496.
Huang, Y, Yan, X, Zhu, MJ, McCormick, RJ, Ford, SP, Nathanielsz, PW and Du, M 2010. Enhanced transforming growth factor-beta signaling and fibrogenesis in ovine fetal skeletal muscle of obese dams at late gestation. American Journal of Physiology – Endocrinology and Metabolism 298, E1254E1260.
Huang, Y, Zhao, JX, Yan, X, Zhu, MJ, Long, NM, McCormick, RJ, Ford, SP, Nathanielsz, PW and Du, M 2012b. Maternal obesity enhances collagen accumulation and cross-linking in skeletal muscle of ovine offspring. PLoS One 7, e31691.
Iannaccone, S, Quattrini, A, Smirne, S, Sessa, M, de Rino, F, Ferini-Strambi, L and Nemni, R 1995. Connective tissue proliferation and growth factors in animal models of Duchenne muscular dystrophy. Journal of the Neurological Sciences 128, 3644.
Jahchan, NS and Luo, K 2010. SnoN in mammalian development, function and diseases. Current Opinion in Pharmacology 10, 670675.
Jenniskens, YM, Koevoet, W, de Bart, ACW, Weinans, H, Jahr, H, Verhaar, JAN, DeGroot, J and van Osch, GJVM 2006. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGF beta 2 and FGF2. Osteoarthritis and Cartilage 14, 11361146.
Joe, AW, Yi, L, Natarajan, A, Le Grand, F, So, L, Wang, J, Rudnicki, MA and Rossi, FM 2010. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology 12, 153163.
Kardon, G, Harfe, BD and Tabin, CJ 2003. A Tcf4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning. Developmental Cell 5, 937944.
Kim, S, Lim, JH and Woo, CH 2013. ERK5 inhibition ameliorates pulmonary fibrosis via regulating Smad3 acetylation. American Journal of Pathology 183, 17581768.
Kishioka, Y, Thomas, M, Wakamatsu, Ji, Hattori, A, Sharma, M, Kambadur, R and Nishimura, T 2008. Decorin enhances the proliferation and differentiation of myogenic cells through suppressing myostatin activity. Journal of Cellular Physiology 215, 856867.
Koohmaraie, M and Geesink, GH 2006. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science 74, 3443.
Kovanen, V and Suominen, H 1989. Age- and training-related changes in the collagen metabolism of rat skeletal muscle. European Journal of Applied Physiology and Occupational Physiology 58, 765771.
Kristensen, L, Therkildsen, M, Riis, B, Sørensen, MT, Oksbjerg, N, Purslow, P and Ertbjerg, P 2002. Dietary-induced changes of muscle growth rate in pigs: effects on in vivo and postmortem muscle proteolysis and meat quality. Journal of Animal Science 80, 28622871.
Leask, A, Denton, CP and Abraham, DJ 2004. Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma. Journal of Investigative Dermatology 122, 16.
Letterio, JJ and Roberts, AB 1998. Regulation of immune responses by TGF-beta. Annual Review Immunology 16, 137161.
Li, X, McFarland, DC and Velleman, SG 2006. Effect of transforming growth factor-beta on decorin and beta1 integrin expression during muscle development in chickens. Poultry Science 85, 326332.
Li, X, McFarland, DC and Velleman, SG 2008. Extracellular matrix proteoglycan decorin-mediated myogenic satellite cell responsiveness to transforming growth factor-beta1 during cell proliferation and differentiation Decorin and transforming growth factor-beta1 in satellite cells. Domestic Animal Endocrinology 35, 263273.
Light, N, Champion, AE, Voyle, C and Bailey, AJ 1985. The role of epimysial, perimysial and endomysial collagen in determining texture in six bovine muscles. Meat Science 13, 137149.
Listrat, A, Picard, B and Geay, Y 1999. Age-related changes and location of type I, III, IV, V and VI collagens during development of four foetal skeletal muscles of double-muscled and normal bovine animals. Tissue Cell 31, 1727.
Liu, RM and Pravia, KAG 2010. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radical Biology and Medicine 48, 115.
Liu, X, Sun, Y, Weinberg, RA and Lodish, HF 2001. Ski/Sno and TGF-beta signaling. Cytokine & Growth Factor Reviews 12, 18.
Luo, K 2004. Ski and SnoN: negative regulators of TGF-beta signaling. Current Opinion in Genetics & Development 14, 6570.
Makihara, N, Arimura, K, Ago, T, Tachibana, M, Nishimura, A, Nakamura, K, Matsuo, R, Wakisaka, Y, Kuroda, J, Sugimori, H, Kamouchi, M and Kitazono, T 2015. Involvement of platelet-derived growth factor receptor beta in fibrosis through extracellular matrix protein production after ischemic stroke. Experimental Neurology 264, 127134.
Massague, J and Chen, YG 2000. Controlling TGF-beta signaling. Genes & Development 14, 627644.
Mathew, SJ, Hansen, JM, Merrell, AJ, Murphy, MM, Lawson, JA, Hutcheson, DA, Hansen, MS, Angus-Hill, M and Kardon, G 2011. Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138, 371384.
Mau, M, Kalbe, C, Wollenhaupt, K, Nurnberg, G and Rehfeldt, C 2008. IGF-I- and EGF-dependent DNA synthesis of porcine myoblasts is influenced by the dietary isoflavones genistein and daidzein. Domestic Animal Endocrinology 35, 281289.
Mayne, R and Sanderson, RD 1985. The extracellular matrix of skeletal muscle. Collagen and Related Research 5, 449468.
McCormick, RJ 1994. The flexibility of the collagen compartment of muscle. Meat Science 36, 7991.
McCormick, RJ 1999. Extracellular modifications to muscle collagen: implications for meat quality. Poultry Science 78, 785791.
McFarland, DC, Pesall, JE and Gilkerson, KK 1993. The influence of growth factors on turkey embryonic myoblasts and satellite cells in vitro. General and Comparative Endocrinology 89, 415424.
Miura, T, Kishioka, Y, Wakamatsu, J-i, Hattori, A, Hennebry, A, Berry, CJ, Sharma, M, Kambadur, R and Nishimura, T 2006. Decorin binds myostatin and modulates its activity to muscle cells. Biochemical and Biophysical Research Communications 340, 675680.
Morales, MG, Cabello-Verrugio, C, Santander, C, Cabrera, D, Goldschmeding, R and Brandan, E 2011. CTGF/CCN-2 over-expression can directly induce features of skeletal muscle dystrophy. Journal of Pathology 225, 490501.
Moustakas, A, Souchelnytskyi, S and Heldin, CH 2001. Smad regulation in TGF-beta signal transduction. Journal of Cell Science 114, 43594369.
Murphy, G 2010. Fell‐Muir Lecture: metalloproteinases: from demolition squad to master regulators. International Journal of Experimental Pathology 91, 303313.
Murphy, MM, Lawson, JA, Mathew, SJ, Hutcheson, DA and Kardon, G 2011. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 36253637.
Myllyharju, J and Kivirikko, KI 2004. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends in Genetics 20, 3343.
Nishimura, T 2010. The role of intramuscular connective tissue in meat texture. Animal Science Journal 81, 2127.
Nomura, N, Sasamoto, S, Ishii, S, Date, T, Matsui, M and Ishizaki, R 1989. Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Research 17, 54895500.
Pearson-White, S 1993. SnoI, a novel alternatively spliced isoform of the ski protooncogene homolog, sno. Nucleic Acids Research 21, 46324638.
Pelzer, T, Lyons, GE, Kim, S and Moreadith, RW 1996. Cloning and characterization of the murine homolog of the sno proto-oncogene reveals a novel splice variant. Developmental Dynamics 205, 114125.
Poncelet, AC and Schnaper, HW 2001. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. Journal of Biological Chemistry 276, 69836992.
Purslow, PP 2014. New developments on the role of intramuscular connective tissue in meat toughness. Annual Review of Food Science and Technology 5, 133153.
Purslow, P, Archile-Contreras, A and Cha, M 2012. Meat Science And Muscle Biology Symposium: manipulating meat tenderness by increasing the turnover of intramuscular connective tissue. Journal of Animal Science 90, 950959.
Rapraeger, AC, Krufka, A and Olwin, BB 1991. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 17051708.
Rhoads, RP, Fernyhough, ME, Liu, X, McFarland, DC, Velleman, SG, Hausman, GJ and Dodson, MV 2009. Extrinsic regulation of domestic animal-derived myogenic satellite cells II. Domestic Animal Endocrinology 36, 111126.
Robins, SP 2007. Biochemistry and functional significance of collagen cross-linking. Biochemical Society Transactions 35, 849852.
Roe, JA, Harper, JM and Buttery, PJ 1989. Protein metabolism in ovine primary muscle cultures derived from satellite cells – effects of selected peptide hormones and growth factors. Journal of Endocrinology 122, 565571.
Ross, SE, Hemati, N, Longo, KA, Bennett, CN, Lucas, PC, Erickson, RL and MacDougald, OA 2000. Inhibition of adipogenesis by Wnt signaling. Science 289, 950953.
Sanes, JR 2003. The basement membrane/basal lamina of skeletal muscle. Journal of Biological Chemistry 278, 1260112604.
Sato, K, Ando, M, Kubota, S, Origasa, K, Kawase, H, Toyohara, H, Sakaguchi, M, Nakagawa, T, Makinodan, Y, Ohtsuki, K and Kawabata, M 1997. Involvement of type V collagen in softening of fish muscle during short-term chilled storage. Journal of Agricultural and Food Chemistry 45, 343348.
Sato, K, Sakuma, A, Ohtsuki, K and Kawabata, M 1994. Subunit composition of Eel (Anguilla-Japonica) type-V collagen – evidence for existence of a novel 4Th Alpha-4(V) chain. Journal of Agricultural and Food Chemistry 42, 675678.
Sheehan, SM and Allen, RE 1999. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. Journal of Cell Physiology 181, 499506.
Shi-Wen, X, Leask, A and Abraham, D 2008. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine & Growth Factor Reviews 19, 133144.
Siegel, RC and Fu, JC 1976. Collagen cross-linking. Purification and substrate specificity of lysyl oxidase. Journal of Biological Chemistry 251, 57795785.
Siegel, RC, Fu, JC and Chang, Y 1976. Collagen cross-linking: the substrate specificity of lysyl oxidase. Advances in Experimental Medicine and Biology 74, 438446.
Soderhall, C, Marenholz, I, Kerscher, T, Ruschendorf, F, Esparza-Gordillo, J, Worm, M, Gruber, C, Mayr, G, Albrecht, M, Rohde, K, Schulz, H, Wahn, U, Hubner, N and Lee, YA 2007. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biology 5, e242.
Suwanabol, PA, Kent, KC and Liu, B 2011. TGF-beta and restenosis revisited: a Smad link. Journal of Surgical Research 167, 287297.
Uezumi, A, Ikemoto-Uezumi, M and Tsuchida, K 2014. Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Frontiers in Physiology 5, 68.
Uezumi, A, Fukada, S, Yamamoto, N, Takeda, S and Tsuchida, K 2010. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biology 12, 143152.
Uezumi, A, Ito, T, Morikawa, D, Shimizu, N, Yoneda, T, Segawa, M, Yamaguchi, M, Ogawa, R, Matev, MM, Miyagoe-Suzuki, Y, Takeda, S, Tsujikawa, K, Tsuchida, K, Yamamoto, H and Fukada, S 2011. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. Journal of Cell Science 124, 36543664.
Urciuolo, A, Quarta, M, Morbidoni, V, Gattazzo, F, Molon, S, Grumati, P, Montemurro, F, Tedesco, FS, Blaauw, B, Cossu, G, Vozzi, G, Rando, TA and Bonaldo, P 2013. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nature Communications 4, 1964.
Veit, G, Kobbe, B, Keene, DR, Paulsson, M, Koch, M and Wagener, R 2006. Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. Journal of Biological Chemistry 281, 34943504.
Velleman, SG 1999. The role of the extracellular matrix in skeletal muscle development. Poultry Science 78, 778784.
Velleman, SG 2007. Muscle development in the embryo and hatchling. Poultry Science 86, 10501054.
Virag, JA, Rolle, ML, Reece, J, Hardouin, S, Feigl, EO and Murry, CE 2007. Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. American Journal of Pathology 171, 14311440.
Voloshenyuk, TG, Hart, AD, Khoutorova, E and Gardner, JD 2011. TNF-alpha increases cardiac fibroblast lysyl oxidase expression through TGF-beta and PI3Kinase signaling pathways. Biochemical and Biophysical Research Communications 413, 370375.
Wang, YX, Dumont, NA and Rudnicki, MA 2014. Muscle stem cells at a glance. Journal of Cell Science 127, 45434548.
Wang, HT, Liu, CF, Tsai, TH, Chen, YL, Chang, HW, Tsai, CY, Leu, S, Zhen, YY, Chai, HT, Chung, SY, Chua, S, Yen, CH and Yip, HK 2012. Effect of obesity reduction on preservation of heart function and attenuation of left ventricular remodeling, oxidative stress and inflammation in obese mice. Journal of Translational Medicine 10, 145.
Woessner, JF 1991. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. The FASEB Journal 5, 21452154.
Wosczyna, MN, Biswas, AA, Cogswell, CA and Goldhamer, DJ 2012. Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. Journal of Bone and Mineral Research 27, 10041017.
Yamaguchi, Y, Mann, DM and Ruoslahti, E 1990. Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature 346, 281284.
Yang, QY, Liang, JF, Rogers, CJ, Zhao, JX, Zhu, MJ and Du, M 2013. Maternal obesity induces epigenetic modifications to facilitate zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes 62, 37273735.
Zhang, X, Nestor, KE, McFarland, DC and Velleman, SG 2008. The role of syndecan-4 and attached glycosaminoglycan chains on myogenic satellite cell growth. Matrix Biology 27, 619630.
Zhang, X, Liu, C, Nestor, K, McFarland, D and Velleman, S 2007. The effect of glypican-1 glycosaminoglycan chains on turkey myogenic satellite cell proliferation, differentiation, and fibroblast growth factor 2 responsiveness. Poultry Science 86, 20202028.
Zhao, T, Zhao, W, Chen, Y, Li, VS, Meng, W and Sun, Y 2013. Platelet-derived growth factor-D promotes fibrogenesis of cardiac fibroblasts. American Journal of Physiology – Heart and Circulatory Physiology 304, H1719H1726.
Zhao, X, Wang, K, Liao, Y, Zeng, Q, Li, Y, Hu, F, Liu, Y, Meng, K, Qian, C, Zhang, Q, Guan, H, Feng, K, Zhou, Y, Du, Y and Chen, Z 2015. MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFbetaRI on cardiac fibroblasts. Cellular Physiology and Biochemistry 35, 213226.
Zhou, B, Liu, Y, Kahn, M, Ann, DK, Han, A, Wang, H, Nguyen, C, Flodby, P, Zhong, Q, Krishnaveni, MS, Liebler, JM, Minoo, P, Crandall, ED and Borok, Z 2012. Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). Journal of Biological Chemistry 287, 70267038.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed