Skip to main content Accessibility help
×
Home

Invited review: Improving feed efficiency of beef cattle – the current state of the art and future challenges

  • D. A. Kenny (a1), C. Fitzsimons (a2), S. M. Waters (a1) and M. McGee (a2)

Abstract

Improvements in feed efficiency of beef cattle have the potential to increase producer profitability and simultaneously lower the environmental footprint of beef production. Although there are many different approaches to measuring feed efficiency, residual feed intake (RFI) has increasingly become the measure of choice. Defined as the difference between an animal’s actual and predicted feed intake (based on weight and growth), RFI is conceptually independent of growth and body size. In addition, other measurable traits related to energy expenditure such as estimates of body composition can be included in the calculation of RFI to also force independence from these traits. Feed efficiency is a multifactorial and complex trait in beef cattle and inter-animal variation stems from the interaction of many biological processes influenced, in turn, by physiological status and management regimen. Thus, the purpose of this review was to summarise and interpret current published knowledge and provide insight into research areas worthy of further investigation. Indeed, where sufficient suitable reports exist, meta-analyses were conducted in order to mitigate ambiguity between studies in particular. We have identified a paucity of information on the contribution of key biological processes, including appetite regulation, post-ruminal nutrient absorption, and cellular energetics and metabolism to the efficiency of feed utilisation in cattle. In addition, insufficient information exists on the relationship between RFI status and productivity-related traits at pasture, a concept critical to the overall lifecycle of beef production systems. Overall, published data on the effect of RFI status on both terminal and maternal traits, coupled with the moderate repeatability and heritability of the trait, suggest that breeding for improved RFI, as part of a multi-trait selection index, is both possible and cumulative, with benefits evident throughout the production cycle. Although the advent of genomic selection, with associated improved prediction accuracy, will expedite the introgression of elite genetics for feed efficiency within beef cattle populations, there are challenges associated with this approach which may, in the long-term, be overcome by increased international collaborative effort but, in the short term, will not obviate the on-going requirement for accurate measurement of the primary phenotype.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Invited review: Improving feed efficiency of beef cattle – the current state of the art and future challenges
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Invited review: Improving feed efficiency of beef cattle – the current state of the art and future challenges
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Invited review: Improving feed efficiency of beef cattle – the current state of the art and future challenges
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Acetoze, G, Weber, KL, Ramsey, JJ and Rossow, HA 2015. Relationship between liver mitochondrial respiration and proton leak in low and high RFI steers from two lineages of RFI Angus bulls. International Scholarly Research Notices 2015, 15. article ID 194014.
Allen, MS 2014. Drives and limits to feed intake in ruminants. Animal Production Science 54, 15131524.
Arthur, PF, Archer, JA, Johnston, DJ, Herd, RM, Richardson, EC and Parnell, PF 2001. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. Journal of Animal Science 79, 28052811.
Awda, BJ, Miller, SP, Montanholi, YR, Vander Voort, G, Caldwell, T, Buhr, MM and Swanson, KC 2013. The relationship between feed efficiency traits and fertility in young beef bulls. Canadian Journal of Animal Science 93, 185192.
Basarab, JA, Beauchemin, KA, Baron, VS, Ominski, KH, Guan, LL, Miller, SP and Crowley, JJ 2013. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production. Animal 7, 303315.
Basarab, JA, Colazo, MG, Ambrose, DJ, Novak, S, McCartney, D and Baron, VS 2011. Residual feed intake adjusted for backfat thickness and feeding frequency is independent of fertility in beef heifers. Canadian Journal of Animal Science 91, 573584.
Basarab, JA, McCartney, D, Okine, EK and Baron, VS 2007. Relationships between progeny residual feed intake and dam productivity traits. Canadian Journal of Animal Science 87, 489502.
Berry, DP and Crowley, JJ 2013. Cell biology symposium: genetics of feed efficiency in dairy and beef cattle. Journal of Animal Science 91, 15941613.
Berry, DP, Garcia, JF and Garrick, DJ 2016. Development and implementation of genomic predictions in beef cattle. Animal Frontiers 6, 3238.
Beef Improvement Federation 2010. Animal evaluation. In Guidelines for uniform beef improvement programs (ed. LV Cundiff, LD Van Vleck and WD Hohenboken), pp. 16–55. Beef Improvement Federation, North Carolina State University, Raleigh, NC, USA.
Black, TE, Bischoff, KM, Mercadante, VRG, Marquezini, GHL, DiLorenzo, N, Chase, CC, Coleman, SW, Maddock, TD and Lamb, GC 2013. Relationships among performance, residual feed intake, and temperament assessed in growing beef heifers and subsequently as 3-year-old, lactating beef cows. Journal of Animal Science 91, 22542263.
Bolormaa, S, Pryce, JE, Kemper, K, Savin, K, Hayes, BJ, Barendse, W, Zhang, Y, Reich, CM, Mason, BA, Bunch, RJ, Harrison, BE, Reverter, A, Herd, RM, Tier, B, Graser, HU and Goddard, ME 2013. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle. Journal of Animal Science 91, 30883104.
Bottje, WG and Carstens, GE 2012. Variation in metabolism: biological efficiency of energy production and utilization that affects feed efficiency. In Feed efficiency in the beef industry (ed. RA Hill), pp. 251274. John Wiley & Sons, Inc., Ames, IA, USA.
Carberry, CA, Kenny, DA, Han, S, McCabe, MS and Waters, SM 2012. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Applied Environmental Microbiology 78, 49494958.
Carberry, CA, Waters, SM, Kenny, DA and Creevey, CJ 2014. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Applied Environmental Microbiology 80, 586594.
Cassady, CJ, Felix, TL, Beever, JE and Shike, DW 2016. Effects of timing and duration of test period and diet type on intake and feed efficiency of Charolais-sired cattle. Journal of Animal Science 94, 47484758.
Connor, EE 2015. Invited review: Improving feed efficiency in dairy production: challenges and possibilities. Animal 9, 395408.
Copping, KJ, Accioly, JM, Deland, MPB, Edwards, NJ, Graham, JF, Hebart, ML, Herd, RM, Jones, FM, Laurence, M, Lee, SJ, Speijers, EJ and Pitchford, WS 2016. Divergent genotypes for fatness or residual feed intake in Angus cattle. 3. Performance of mature cows. Animal Production Science 58, 5566.
Crowley, JJ, Evans, RD, Mc Hugh, N, Kenny, DA, McGee, M, Crews, DH and Berry, DP 2011. Genetic relationships between feed efficiency in growing males and beef cow performance. Journal of Animal Science 89, 33723381.
Crowley, JJ, McGee, M, Kenny, DA, Crews, DH, Evans, RD and Berry, DP 2010. Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance tested beef bulls. Journal of Animal Science 88, 885894.
Culbertson, MM, Speidel, SE, Peel, RK, Cockrum, RR, Thomas, MG and Enns, RM 2015. Optimum measurement period for evaluating feed intake traits in beef cattle. Journal of Animal Science 93, 24822487.
Diskin, MG and Kenny, DA 2014. Optimising reproductive performance of beef cows and replacement heifers. Animal 8, 2739.
Donoghue, KA, Arthur, PF, Wilkins, JF and Herd, RM 2011. Onset of puberty and early-life reproduction in Angus females divergently selected for post-weaning residual feed intake. Animal Production Science 51, 183190.
Durunna, ON, Colazo, MG, Ambrose, DJ, McCartney, D, Baron, VS and Basarab, JA 2012. Evidence of residual feed intake reranking in crossbred replacement heifers. Journal of Animal Science 90, 734741.
Durunna, ON, Mujibi, FD, Goonewardene, L, Okine, EK, Basarab, JA, Wang, Z and Moore, SS 2011. Feed efficiency differences and reranking in beef steers fed grower and finisher diets. Journal of Animal Science 89, 158167.
Fitzsimons, C, Kenny, DA, Fahey, AG and McGee, M 2013. Methane emissions, body composition and rumen fermentation traits of beef heifers differing in phenotypic residual feed intake. Journal of Animal Science 91, 57895800.
Fitzsimons, C, Kenny, DA, Fahey, AG and McGee, M 2014b. Feeding behavior, rumen fermentation variables and body composition traits of pregnant beef cows differing in phenotypic residual feed intake. Journal of Animal Science 92, 21702181.
Fitzsimons, C, Kenny, DA and McGee, M 2014a. Visceral organ weights, digestion and carcass characteristics of beef bulls differing in residual feed intake offered a high concentrate diet. Animal 8, 949959.
Fitzsimons, C, Kenny, DA, Waters, SM, Earley, B and McGee, M 2014c. Effects of phenotypic residual feed intake on response to an in-vivo glucose tolerance test and gene expression in the insulin signalling pathway in beef cattle. Journal of Animal Science 92, 46164631.
Fitzsimons, C, McGee, M, Keogh, K, Waters, SM and Kenny, DA 2017. Molecular physiology of feed efficiency in beef cattle. In Biology of domestic animals (ed. CG Scanes and RA Hill), pp. 120163. CRC Press, Boca Raton, FL, USA.
Fonseca, L, Gimenez, D, Mercadante, M, Bonilha, S, Ferro, J, Baldi, F, De Souza, F and De Albuquerque, L 2015. Expression of genes related to mitochondrial function in Nellore cattle divergently ranked on residual feed intake. Molecular Biology Reports 42, 17.
Fontoura, ABP, Montanholi, YR, Diel de Amorim, M, Foster, RA, Chenier, T and Miller, SP 2015. Associations between feed efficiency, sexual maturity and fertility-related measures in young beef bulls. Animal 10, 96105.
Forbes, JM 2005. Voluntary feed intake and diet selection. In Quantitative aspects of ruminant digestion and metabolism (ed. J Dijkstra, JM Forbes and J France), pp. 607625. CAB International, University Press, Cambridge, UK.
Gomes, RC, Sainz, RD, Silva, SL, César, MC, Bonin, MN and Leme, PR 2012. Feedlot performance, feed efficiency reranking, carcass traits, body composition, energy requirements, meat quality and calpain system activity in Nellore steers with low and high residual feed intake. Livestock Science 150, 265273.
Goonewardene, LA, Okine, E, Wang, Z, Spaner, D, Mir, PS, Mir, Z and Marx, T 2004. Residual metabolizable energy intake and its association with diet and test duration. Canadian Journal of Animal Science 84, 291295.
Gregorini, P, Gunter, SA, Beck, PA, Soder, KJ and Tamminga, S 2008. Review: The interaction of diurnal grazing pattern, ruminal metabolism, nutrient supply, and management in cattle. Professional Animal Scientist 24, 308318.
Hafla, AN, Carstens, GE, Forbes, TDA, Tedeschi, LO, Bailey, JC, Walter, JT and Johnson, JR 2013. Relationships between postweaning residual feed intake in heifers and forage utilization, body composition, feeding behavior, physical activity and heart rate of pregnant beef females. Journal of Animal Science 91, 53535365.
Hayes, BJ, Bowman, PJ, Chamberlain, A and Goddard, ME 2009. Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science 92, 433443.
Hebart, ML, Accioly, JM, Copping, KJ, Deland, MPB, Herd, RM, Jones, FM, Laurence, M, Lee, SJ, Lines, DS, Speijers, J, Walmsley, BJ and Pitchford, WS 2016. Divergent breeding values for fatness or residual feed intake in Angus cattle. 5. Cow genotype affects feed efficiency and maternal productivity. Animal Production Science 58, 8093.
Hegarty, RS, Goopy, JP, Herd, RM and McCorkell, B 2007. Cattle selected for lower residual feed intake have reduced daily methane production. Journal of Animal Science 85, 14791486.
Herd, RM and Arthur, PF 2009. Physiological basis for variation in residual feed intake. Journal of Animal Science 87, E64E71.
Herd, RM, Arthur, PF and Archer, JA 2006. Repeatability of residual feed intake and interaction with level of nutrition in Angus cows. In Proceedings of the 26th Biennial Conference of the Australian Society of Animal Production. 10–14 July 2006, Short Communication no. 80 (ed. NR Adams, KP Croker, DR Lindsay, CA Anderson and LE Webb). Perth, WA, Australia.
Herd, RM, Dicker, RW, Lee, GJ, Johnston, DJ, Hammond, AJ and Oddy, VH 2004. Steer growth and feed efficiency on pasture are favourably associated with genetic variation in sire net feed intake. Animal Production in Australia 25, 9396.
Jones, FM, Accioly, JM, Copping, KJ, Deland, MPB, Graham, JF, Hebart, ML, Herd, RM, Laurence, M, Lee, SJ, Speijers, J and Pitchford, WS 2016. Divergent breeding values for fatness or residual feed intake in Angus cattle. 1. Pregnancy rates of heifers differed between fat lines and were affected by weight and fat. Animal Production Science 58, 3342.
Jones, FM, Phillips, FA, Naylor, T and Mercer, NB 2011. Methane emissions from grazing Angus beef cows selected for divergent residual feed intake. Animal Feed Science and Technology 166–167, 302307.
Kelly, AK, Earley, B, McGee, M, Fahey, AG and Kenny, DA 2016. Endocrine and hematological responses of beef heifers divergently ranked for residual feed intake following a bovine corticotrophin-releasing hormone challenge. Journal of Animal Science 94, 17031711.
Kelly, AK, Lawrence, P, Earley, B, Kenny, DA and McGee, M 2017. Stress and immunological response of heifers divergently ranked for residual feed intake following an adrenocorticotropic hormone challenge. Journal of Animal Science and Biotechnology 8, 65.
Kelly, AK, McGee, M, Crews, DH, Fahey, AG, Wylie, AR and Kenny, DA 2010a. Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers. Journal of Animal Science 88, 109123.
Kelly, AK, McGee, M, Crews, DH, Sweeney, T, Boland, TM and Kenny, DA 2010b. Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake. Journal of Animal Science 88, 32143225.
Kelly, AK, Waters, SM, McGee, M, Fonseca, RG, Carberry, C and Kenny, DA 2011. mRNA expression of genes regulating oxidative phosphorylation in the muscle of beef cattle divergently ranked on residual feed intake. Physiological Genomics 43, 1223.
Kolath, WH, Kerley, MS, Golden, JW and Keisler, DH 2006. The relationship between mitochondrial function and residual feed intake in Angus steers. Journal of Animal Science 84, 861865.
Kong, RSG, Liang, G, Chen, Y, Stothard, P and Guan, LL 2016. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake. BMC Genomics 17, 592.
Kowalski, LH, Fernandes, SR, DiLorenzo, N, Moletta, JL, Rossi, P and de Freitas, JA 2017. Residual feed intake and reproductive traits of growing Purunã bulls. Journal of Animal Science 95, 930938.
Lancaster, PA, Carstens, GE, Michal, JJ, Brennan, KM, Johnson, KA and Davis, ME 2014. Relationships between residual feed intake and hepatic mitochondrial function in growing beef cattle. Journal of Animal Science 92, 31343141.
Lancaster, PA, Carstens, GE, Ribeiro, FRB, Davis, ME, Lyons, JG and Welsh, TH 2008. Effects of divergent selection for serum insulin-like growth factor-I concentration on performance, feed efficiency, and ultrasound measures of carcass composition traits in Angus bulls and heifers. Journal of Animal Science 86, 28622871.
Lawrence, P 2011. The effect of divergent selection for residual feed intake on the productivity of beef suckler cows and their progeny. PhD thesis, University College Dublin, Dublin, Ireland.
Lawrence, P, Kenny, DA, Earley, B, Crews, DH and McGee, M 2011. Grass silage intake, rumen and blood variables, ultrasonic and body measurements, feeding behavior and activity in pregnant beef heifers differing in phenotypic residual feed intake. Journal of Animal Science 89, 32483261.
Lawrence, P, Kenny, DA, Earley, B and McGee, M 2012. Grazed grass herbage intake and performance of beef heifers with predetermined phenotypic residual feed intake classification. Animal 6, 16481661.
Lawrence, P, Kenny, DA, Earley, B and McGee, M 2013. Intake of conserved and grazed grass and performance traits in beef suckler cows differing in phenotypic residual feed intake. Livestock Science 152, 154166.
Lindholm-Perry, AK, Kuehn, LA, Freetly, HC and Snelling, WM 2015. Genetic markers that influence feed efficiency phenotypes also affect cattle temperament as measured by flight speed. Animal Genetics 46, 6064.
Lu, D, Sargolzaei, M, Li, C, Abo-Ismail, M, Vander Voort, G, Wang, Z, Plastow, G, Moore, S and Miller, SP 2013. Association analysis for feed efficiency traits in beef cattle using preserved haplotypes. Genome 56, 586591.
Manafiazar, G, Basarab, JA, Baron, VS, McKeown, L, Doce, RR, Swift, M, Undi, M, Wittenberg, K and Ominski, K 2015. Effect of post-weaning residual feed intake classification on grazed grass intake and performance in pregnant beef heifers. Canadian Journal of Animal Science 95, 369381.
Manafiazar, G, Basarab, JA, McKeown, L, Stewart-Smith, J, Baron, V, MacNeil, MD and Plastow, G 2017. Optimizing feed intake recording and feed efficiency estimation to increase the rate of genetic gain for feed efficiency in beef cattle. Canadian Journal of Animal Science 97, 456465.
Mao, F, Chen, L, Vinsky, M, Okine, E, Wang, Z, Basarab, J, Crews, DH and Li, C 2013. Phenotypic and genetic relationships of feed efficiency with growth performance, ultrasound, and carcass merit traits in Angus and Charolais steers. Journal of Animal Science 91, 20672076.
McCann, JC, Wiley, LM, Forbes, TD, Rouquette, FM and Tedeschi, LO 2014. Relationship between the rumen microbiome and residual feed intake-efficiency of Brahman bulls stocked on Bermudagrass pastures. Plos One 9, e91864.
McDonnell, RP, Hart, KJ, Boland, TM, Kelly, AK, McGee, M and Kenny, DA 2016. Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets. Journal of Animal Science 94, 11791193.
McGee, M and Drennan, MJ 2006. Relationships between residual feed intake and maternal productivity and metabolic traits of beef suckler cows. In Proceedings of the Agricultural Research Forum, 15–16 March, Tullamore, Ireland, p. 100.
McGee, M, Ramirez, JA, Carstens, GE, Price, WJ, Hall, JB and Hill, RA 2014. Relationships of feeding behaviors with efficiency in RFI-divergent Japanese Black cattle. Journal of Animal Science 92, 35803590.
Meyer, AM, Hess, BW, Paisley, SI, Du, M and Caton, JS 2014. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation. Journal of Animal Science 92, 38553867.
Meyer, AM, Kerley, MS and Kallenbach, RL 2008. The effect of residual feed intake classification on forage intake by grazing beef cows. Journal of Animal Science 86, 26702679.
Montanholi, Y, Fontoura, A, Swanson, K, Coomber, B, Yamashiro, S and Miller, S 2013a. Small intestine histomorphometry of beef cattle with divergent feed efficiency. Acta Veterinaria Scandinavica 55, 9.
Montanholi, YR, Lam, S, Peripolli, V, Vander Voort, G and Miller, SP 2013b. Short Communication: Associations between chemical composition and physical properties of milk and colostrum with feed efficiency in beef cows. Canadian Journal of Animal Science 93, 487492.
Montanholi, YR, Swanson, KC, Palme, R, Schenkel, FS, McBride, BW, Lu, D and Miller, SP 2010. Assessing feed efficiency in beef steers through feeding behavior, infrared thermography and glucocorticoids. Animal 4, 692701.
Morris, ST, Chan, FY, Lopez-Villalobos, N, Kenyon, PR, Garrick, DJ and Blair, HT 2014. Growth, feed intake and maternal performance of Angus heifers from high and low feed efficiency selection lines. Animal Production Science 54, 14281431.
Munro, JC, Schenkel, FS, Physick-Sheard, PW, Fontoura, ABP, Miller, SP, Tennessen, T and Montanholi, YR 2017. Associations of acute stress and overnight heart rate with feed efficiency in beef heifers. Animal 11, 452460.
Myer, PR, Smith, TPL, Wells, JE, Kuehn, LA and Freetly, HC 2015. Rumen microbiome from steers differing in feed efficiency. PLOS ONE 10, e0129174.
Nascimento, CF, Branco, RH, Bonilha, SFM, Cyrillo, JNS, Negrão, JA and Mercadante, MEZ 2015. Residual feed intake and blood variables in young Nellore cattle. Journal of Animal Science 93, 13181326.
Nielsen, MK, MacNeil, MD, Dekkers, JCM, Crews, DH, Rathje, TA, Enns, RM and Weaber, RL 2013. Review: Life-cycle, total-industry genetic improvement of feed efficiency in beef cattle: Blueprint for the Beef Improvement Federation. Professional Animal. Scientist 29, 559565.
Nkrumah, JD, Okine, EK, Mathison, GW, Schmid, K, Li, C, Basarab, JA, Price, MA, Wang, Z and Moore, SS 2006. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. Journal of Animal Science 84, 145153.
Paradis, F, Yue, S, Grant, JR, Stothard, P, Basarab, JA and Fitzsimmons, C 2015. Transcriptomic analysis by RNA sequencing reveals that hepatic interferon-induced genes may be associated with feed efficiency in beef heifers. Journal of Animal Science 93, 33313341.
Perkins, SD, Key, CN, Garrett, CF, Foradori, CD, Bratcher, CL, Kriese-Anderson, LA and Brandebourg, TD 2014. Residual feed intake studies in Angus-sired cattle reveal a potential role for hypothalamic gene expression in regulating feed efficiency. Journal of Animal Science 92, 549560.
Pickering, NK, Oddy, VH, Basarab, J, Cammack, K, Hayes, B, Hegarty, RS, Lassen, J, McEwan, JC, Miller, S, Pinares-Patiño, CS and de Haas, Y 2015. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants. Animal 9, 14311440.
Ramos, MH and Kerley, MS 2013. Mitochondrial complex I protein differs among residual feed intake phenotype in beef cattle. Journal of Animal Science 91, 32993304.
Richardson, EC, Herd, RM, Archer, JA and Arthur, PF 2004. Metabolic differences in Angus steers divergently selected for residual feed intake. Australian Journal of Experimental Agriculture 44, 441452.
Robinson, DL and Oddy, VH 2004. Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livestock Production Science 90, 255270.
Savietto, D, Berry, DP and Friggens, NC 2014. Towards an improved estimation of the biological components of residual feed intake in growing cattle. Journal of Animal Science 92, 467476.
Seabury, CM, Oldeschulte, DL, Saatchi, M, Beever, JE, Decker, JE, Halley, YA, Bhattarai, EK, Molaei, M, Freetly, HC, Hansen, SL, Yampara-Iquise, H, Johnson, KA, Kerley, MS, Kim, JW, Loy, DD, Marques, E, Neibergs, HL, Schnabel, RD, Shike, DW, Spangler, ML, Weaber, RL, Garrick, DJ and Taylor, JF 2017. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics 18, 386.
Serão, N, Gonzalez-Pena, D, Beever, J, Faulkner, D, Southey, B and Rodriguez-Zas, S 2013. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle. BMC Genetics 14, 94.
Shabat, SKB, Sasson, G, Doron-Faigenboim, A, Durman, T, Yaacoby, S, Berg Miller, ME, White, BA, Shterzer, N and Mizrahi, I 2016. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. International Society for Microbial Ecology Journal 10, 29582972.
Shaffer, KS, Turk, P, Wagner, WR and Felton, EED 2011. Residual feed intake, body composition, and fertility in yearling beef heifers. Journal of Animal Science 89, 10281034.
Stothard, P, Liao, X, Arantes, AS, De Pauw, M, Coros, C, Plastow, GS, Sargolzaei, M, Crowley, JJ, Basarab, JA, Schenkel, F, Moore, S and Miller, SP 2015. A large and diverse collection of bovine genome sequences from the Canadian Cattle Genome Project. GigaScience 4, 49.
Taylor, JF, Beever, JE, Decker, JE, Freetly, HC, Garrick, DJ, Hansen, SL, Johnson, KA, Kerley, MS, Loy, DD, Neibergs, HL, Saatchi, M, Schnabel, RD, Seabury, CM, Shike, DW, Spangler, ML and Weaber, RL 2017. The genetic improvement of feed efficiency in beef cattle. Journal of Animal Science 95, 161.
Wang, Z, Colazo, MG, Basarab, JA, Goonewardene, LA, Ambrose, DJ, Marques, E, Plastow, G, Miller, SP and Moore, SS 2012. Impact of selection for residual feed intake on breeding soundness and reproductive performance of bulls on pasture-based multisire mating. Journal of Animal Science 90, 29632969.
Wang, Z, Nkrumah, JD, Li, C, Basarab, JA, Goonewardene, LA, Okine, EK, Crews, DH and Moore, SS 2006. Test duration for growth, feed intake, and feed efficiency in beef cattle using the GrowSafe System. Journal of Animal Science 84, 22892298.
Welch, CM, Thornton, KJ, Murdoch, GK, Chapalamadugu, KC, Schneider, CS, Ahola, JK, Hall, JB, Price, WJ and Hill, RA 2013. An examination of the association of serum IGF-I concentration, potential candidate genes, and fiber type composition with variation in residual feed intake in progeny of Red Angus sires divergent for maintenance energy EPD. Journal of Animal Science 91, 56265636.

Keywords

Type Description Title
WORD
Supplementary materials

Kenny et al. supplementary material
Table S1

 Word (41 KB)
41 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed