Skip to main content Accessibility help
×
Home

Heritability estimates of methane emissions from sheep

  • C. S. Pinares-Patiño (a1), S. M. Hickey (a2), E. A. Young (a3), K. G. Dodds (a3), S. MacLean (a1), G. Molano (a1), E. Sandoval (a1), H. Kjestrup (a1), R. Harland (a1), C. Hunt (a1), N. K. Pickering (a3) and J. C. McEwan (a3)...

Abstract

The objective of this study was to determine the genetic parameters of methane (CH4) emissions and their genetic correlations with key production traits. The trial measured the CH4 emissions, at 5-min intervals, from 1225 sheep placed in respiration chambers for 2 days, with repeat measurements 2 weeks later for another 2 days. They were fed in the chambers, based on live weight, a pelleted lucerne ration at 2.0 times estimated maintenance requirements. Methane outputs were calculated for g CH4/day and g CH4/kg dry matter intake (DMI) for each of the 4 days. Single trait models were used to obtain estimates of heritability and repeatability. Heritability of g CH4/day was 0.29 ± 0.05, and for g CH4/kg DMI 0.13 ± 0.03. Repeatability between measurements 14 days apart were 0.55 ± 0.02 and 0.26 ± 0.02, for the two traits. The genetic and phenotypic correlations of CH4 outputs with various production traits (weaning weight, live weight at 8 months of age, dag score, muscle depth and fleece weight at 12 months of age) measured in the first year of life, were estimated using bivariate models. With the exception of fleece weight, correlations were weak and not significantly different from zero for the g CH4/kg DMI trait. For fleece weight the phenotypic and genetic correlation estimates were −0.08 ± 0.03 and −0.32 ± 0.11 suggesting a low economically favourable relationship. These results indicate that there is genetic variation between animals for CH4 emission traits even after adjustment for feed intake and that these traits are repeatable. Current work includes the establishment of selection lines from these animals to investigate the physiological, microbial and anatomical changes, coupled with investigations into shorter and alternative CH4 emission measurement and breeding value estimation techniques; including genomic selection.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Heritability estimates of methane emissions from sheep
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Heritability estimates of methane emissions from sheep
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Heritability estimates of methane emissions from sheep
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use

Corresponding author

References

Hide All
Clark, H 2013. Nutritional and host effects on methanogenesis in the grazing ruminant. Animal 7 (supp 1), 4148.
Cottle, DJ, Nolan, JV, Weidemann, SG 2011. Ruminant enteric methane mitigation: a review. Animal Production Science 51, 491514.
Cottle, DJ, Connington, J 2012. Breeding for reduced methane emissions in extensive UK sheep systems. The Journal of Agricultural Science 150, 570583.
Garnsworthy, PC, Craigon, J, Hernandez-Medrano, JH, and Saunders, N 2012. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. Journal of Dairy Science 95, 31663180.
Gilmour, AR, Gogel, BJ, Cullis, BR, Thompson, R 2009. ASReml User Guide Release 3.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK, www.vsni.co.uk
Goopy, JP, Woodgate, R, Donaldson, A, Robinson, DL, Hegarty, RS 2011. Validation of a short-term methane measurement using portable static chambers to estimate daily methane production in sheep. Animal Feed Science and Technology 166, 219226.
Hegarty, RS, Alcock, D, Robinson, DL, Goopy, JP, Vercoe, PE 2010. Nutritional and flock management options to reduce methane output and methane per unit product from sheep enterprises. Animal Production Science 50, 10261033.
Hegarty, RS, McEwan, JC 2010. Genetics opportunities to reduce enteric methane emissions from ruminant livestock Proceedings of 9th World Congress on Genetics Applied to Livestock Production, Leipzig Germany. Retrieved May 9, 2013, from http://www.kongressband.de/wcgalp2010/assets/pdf/0515.pdf
Janssen, PH 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology 160, 122.
Johnson, K, Huyler, M, Westberg, H, Lamb, B, Zimmerman, P 1994. Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environmental Science and Technology 28, 359362.
Ludemann, CI, Bryne, T, Sise, J, Amer, PR 2012. Selection indices offer potential for New Zealand sheep farmers to reduce greenhouse gas emissions per unit of product. International Journal of Agricultural Management 1, 2940.
McLean, NJ, Jopson, NB, Campbell, AW, Knowler, K, Behrent, M, Cruickshank, G, Logan, CM, Muir, PD, Wilson, T, McEwan, JC 2006. An evaluation of sheep meat genetics in New Zealand: the central progeny test (CPT). Proceedings New Zealand Society of Animal Production 66, 368372.
Pickering, NK, Dodds, KG, Blair, HT, Hickson, RE, Johnson, PL, McEwan, JC 2011. Genetic parameters for production traits in New Zealand dual-purpose sheep, with an emphasis on dagginess. Journal of Animal Science 90, 14111420.
Pinares-Patiño, CS, Ulyatt, MJ, Lassey, KR, Barry, TN, Holmes, CW 2003. Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay. Journal of Agricultural Science, Cambridge 140, 205214.
Pinares-Patiño, CS, Ebrahimi, SH, McEwan, JC, Clark, H, Luo, D 2011a. Is rumen retention time implicated in sheep differences in methane emission? Proceedings of the New Zealand Society of Animal Production 71, 219222.
Pinares-Patiño, CS, Lassey, KR, Martin, RJ, Molano, G, Fernandez, M, MacLean, S, Sandoval, E, Luo, D, Clark, H 2011b. Assessment of the sulphur hexafluoride (SF6) tracer technique using respiration chambers for estimation of methane emissions from sheep. Animal Feed Science and Technology 166, 201209.
Pinares-Patiño, CS, McEwan, JC, Dodds, KG, Cárdenas, EA, Hegarty, RS, Koolaard, JP, Clark, H 2011c. Repeatability of methane emissions from sheep. Animal Feed Science and Technology 166, 210218.
Pinares-Patiño, CS, Hunt, C, Martin, R, West, J, Lovejoy, P, Waghorn, GC 2012. New Zealand ruminant methane measurement centre. In Manual on respiration chambers designs (ed. CS Pinares-Patiño and GC Waghorn), pp. 9–28. GRA, New Zealand. Retrieved May 9, 2013, from http://www.globalresearchalliance.org/app/uploads/2012/03/GRA-MAN-Facility-BestPract-2012-ch11.pdf
Robinson, DL, Goopy, JP, Hegarty, RS, Vercoe, PE 2010. Repeatability, animal and sire variation in 1-hr methane emissions and relationship with rumen volatile fatty acid concentrations. In Proceedings 9th World Congress in Genetics Applied to Livestock. Leipzig, Germany. Retrieved May 9, 2013, from www.kongressband.de/wcgalp2010/assets/pdf/0712.pdf
Robinson, DL, Bickell, SL, Toovey, AF, Revell, DK, Vercoe, PE 2011. Factors affecting variability in feed intake of sheep with ad libitum access to feed and the relationship with daily methane production. In Proceedings of the Association of Advancement of Animal Breeding and Genetics 19, pp. 159–162.
SAS 2005. SAS/STAT 9.1 user's guide. SAS Institute Inc., Cary, NC, USA, p. 5121.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Pinares-Patiño Supplementary Material
Supplementary Material 1

 Unknown (11 KB)
11 KB

Heritability estimates of methane emissions from sheep

  • C. S. Pinares-Patiño (a1), S. M. Hickey (a2), E. A. Young (a3), K. G. Dodds (a3), S. MacLean (a1), G. Molano (a1), E. Sandoval (a1), H. Kjestrup (a1), R. Harland (a1), C. Hunt (a1), N. K. Pickering (a3) and J. C. McEwan (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed