Skip to main content Accessibility help
×
Home

A grass-based diet favours muscle n-3 long-chain PUFA deposition without modifying gene expression of proteins involved in their synthesis or uptake in Charolais steers

  • M. Cherfaoui (a1), D. Durand (a1), M. Bonnet (a1), L. Bernard (a1), D. Bauchart (a1), I. Ortigues-Marty (a1) and D. Gruffat (a1)...

Abstract

N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are subject of growing interest as they are of particular relevance for meat quality and human health. However, their content in the muscles of cattle is generally low probably as the complex result of their biosynthesis from dietary n-3 PUFA in the muscle and/or in other tissues/organs and of their subsequent uptake by the muscle. In view of this, this study aimed at understanding whether the changes in the muscle n-3 LCPUFA content, depending on the diet (maize silage v. grass) or the muscle type (Rectus abdominis, RA v.Semitendinosus, ST) in 12 Charolais steers, were related to variations in the gene expression of proteins involved in n-3 LCPUFA biosynthesis or cellular uptake. Tissue fatty acid composition was analysed by gas-liquid chromatography and mRNA abundance of proteins by quantitative real-time PCR. The grass-based diet resulted in a 2.3-fold (P < 0.0002) increase in both RA and ST n-3 LCPUFA content compared with the maize silage-based diet, whereas no difference in the expression of genes involved in n-3 LCPUFA biosynthesis and uptake was observed between diets. ST exhibited a 1.5-fold higher n-3 LCPUFA content than RA (P < 0.003), whereas the gene expression of proteins involved in n-3 LCPUFA biosynthesis and uptake was 1.3- to 18-fold higher in RA than in ST (P < 0.05). In conclusion, diet- or muscle type-dependent changes in the muscle n-3 LCPUFA content of Charolais steers did not seem to be mediated by the gene expression regulation of proteins involved in the biosynthesis or uptake of these fatty acids.

Copyright

Corresponding author

References

Hide All
Anderson, BM, Ma, WL 2009. Are all n-3 polyunsaturated fatty acids created equal? Lipids in Health and Diseases 8, 33. Retrieved August 10, 2009, from http://www.lipidworld.com/content/8/1/33 .
Barceló-Coblijn, G, Murphy, EJ 2009. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Progress in Lipid Research 48, 355374.
Bauchart, D, Chantelot, F, Gandemer, G 2008. Qualités nutritionnelles de la viande et des abats chez le bovin : données récentes sur les principaux constituants d'intérêt nutritionnel (Nutritional qualities of bovine meats and offals; recent datas on the main constituants of nutritional interest). Cahiers de Nutrition et de Diététique 43 (Hors Série 1), 1S91S39.
Bauchart, D, Gladine, C, Gruffat, D, Leloutre, L, Durand, D 2005. Effects of diets supplemented with oils and vitamin E on specific fatty acids of Rectus abdominis muscle in Charolais fattening bulls. In Indicators of milk and beef quality, EAAP Publication, no. 112 (ed. JF. Hocquette and S Gigli), pp. 431436. Wageningen Acad. Publishers, Wageningen, The Netherlands.
Bonen, A, Dyck, DJ, Ibrahimi, A, Abumrad, NA 1999. Muscle contractile activity increases fatty acid metabolism and transport and FAT/CD36. American Journal of Physiology – Endocrinology and Metabolism 276, E642E649.
Bonnet, M, Bernard, L, Bes, S, Leroux, C 2013. Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Animal 7, 13441353.
Bonnet, M, Leroux, C, Faulconnier, Y, Hocquette, JF, Bocquier, F, Martin, P, Chilliard, Y 2000. Lipoprotein lipase activity and mRNA are up-regulated by refeeding in adipose tissue and cardiac muscle of sheep. Journal of Nutrition 130, 749756.
Cherfaoui, M, Durand, D, Bonnet, M, Bauchart, D, Thomas, A, Gruffat, D 2012. Expression of enzymes and transcription factors involved in n-3 long chain PUFA biosynthesis in Limousin bull tissues. Lipids 47, 391401.
Cuvelier, C, Dotreppe, O, Cabaraux, JF, Dufrasne, I, Istasse, L, Hornick, JL 2005. Influence of breed, diet and muscle on the fatty acid content in meat from young finished bulls. In Indicators of milk and beef quality, EAAP Publication no. 112 (ed. Hocquette JF and Gigli S), pp. 409418. Wageningen Acad. Publishers, Wageningen, The Netherlands.
De Smet, S, Raes, K, Demeyer, D 2004. Meat fatty acid composition as affected by fatness and genetic factors: a review. Animal Research 53, 8198.
Faulconnier, Y, Ortigues-Marty, I, Delavaud, C, Dozias, D, Jailler, R, Micol, D, Chilliard, Y 2007. Influence of the diet and grazing on adipose tissue lipogenic activities and plasma leptin in steers. Animal 1, 12631271.
Ferdinandusse, S, Denis, S, Mooijer, PAW, Zhang, Z, Reddy, JK, Spector, AA, Wanders, RJA 2001. Identification of the peroxisomal β-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. Journal of Lipid Research 42, 19871995.
Folch, J, Lees, M, Sloane-Stanley, GH 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.
Giltay, EJ, Gooren, LJ, Toorians, AW, Katan, MB, Zock, PL 2004. Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. The American Journal of Clinical Nutrition 80, 11671174.
Gruffat, D, Cherfaoui, M, Bonnet, M, Thomas, A, Bauchart, D, Durand, D 2013. Breed and dietary linseed affect gene expression of enzymes and transcription factors involved in n-3 long chain PUFA synthesis in Longissimus thoracis muscle of bulls. Journal of Animal Science (In press).
Hajri, T, Abumrad, NA 2002. Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annual Review of Nutrition 22, 383415.
Herdmann, A, Nuernberg, K, Martin, J, Nuernberg, G, Doran, O 2010a. Effect of dietary fatty acids on expression of lipogenic enzymes and fatty acid profile in tissues of bulls. Animal 4, 755762.
Herdmann, A, Martin, J, Nuernberg, G, Wegner, J, Dannenberger, D, Nuernberg, K 2010b. How do n-3 fatty acid (short-time restricted vs unrestricted) and n-6 fatty acid enriched diets affect the fatty acid profile in different tissues of German Simmental bulls? Meat Science 86, 712719.
Hiller, B, Herdmann, A, Nuernberg, K 2011. Dietary n-3 fatty acids significantly suppress lipogenesis in bovine muscle and adipose tissue: a functional genomics approach. Lipids 46, 557567.
Hocquette, JF, Graulet, B, Olivecrona, T 1998. Lipoprotein lipase activity and mRNA levels in bovine tissues. Comparative Biochemistry and Physiology Part B 121, 201212.
Itoh, M, Johnson, CB, Cosgrove, GP, Muir, PD, Purchas, RW 1999. Intramuscular fatty acid composition of neutral and polar lipids for heavy-weight Angus and Simmental steers finished on pasture or grain. Journal of the Science of Food and Agriculture 79, 821827.
Jakobsson, A, Westerberg, R, Jacobsson, A 2006. Fatty acid elongases in mammals: their regulation and roles in metabolism. Progress in Lipid Research 45, 237249.
Jurie, C, Cassar-Malek, I, Bonnet, M, Leroux, C, Bauchart, D, Boulesteix, P, Pethick, DW, Hocquette, JF 2007. Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. Journal of Animal Science 85, 26602669.
Kronberg, SLBarceló-Coblijn, G, Shin, J, Lee, K, Murphy, EJ 2006. Bovine muscle n-3 fatty acid content is increased with flaxseed feeding. Lipids 41, 10591068.
Marra, CA, De Alaniz, MJT 1989. Influence of testosterone administration on the biosynthesis of unsaturated fatty acids in male and female rats. Lipids 24, 10141019.
Missotten, J, De Smet, S, Raes, K, Doran, O 2009. Effect of supplementation of the maternal diet with fish oil or linseed oil on fatty-acid composition and expression of Δ5- and Δ6-desaturases in tissues of female piglets. Animal 3, 11961204.
Nakamura, MT, Nara, TY 2004. Structure, function and dietary regulation of delta6, delta5 and delta9 desaturases. Annual Review of Nutrition 24, 345376.
Nuernberg, K, Dannenberger, D, Nuernberg, G, Ender, K, Voigt, J, Scollan, ND, Wood, JD, Nute, GR, Richardson, RI 2005. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livestock Production Science 94, 137147.
Ouellet, M, Emond, V, Chuck, T, Julien, C, Bourasset, F, Oddo, S, LaFerla, F, Bazinet, RP, Calon, F 2009. Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood–brain barrier: an in situ cerebral perfusion study. Neurochemistry International 55, 476482.
Scollan, N, Hocquette, JF, Nuernberg, K, Dannenberger, D, Richardson, I, Moloney, A 2006. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science 74, 1733.
Sorrentino, D, Robinson, RB, Kiang, CL, Berk, PD 1989. At physiologic albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory. Journal of Clinical Investigation 84, 13251333.
Tu, WC, Cook-Johnson, RJ, James, MJ, Mühlhäusler, BS, Gibson, RA 2010. Omega-3 long chain fatty acid synthesis is regulated more by substrate levels than gene expression. Prostaglandins, Leukotrienes and Essential Fatty Acids 83, 6168.
Ward, RE, Woodward, B, Otter, N, Doran, O 2010. Relationship between the expression of key lipogenic enzymes, fatty acid composition, and intramuscular fat content of Limousin and Aberdeen Angus cattle. Livestock Science 127, 2229.
Williams, CM 2000. Dietary fatty acids and human health. Annales de Zootechnie 49, 165180.
Wood, JD, Enser, M, Fisher, AV, Nute, GR, Sheard, PR, Richardson, RI, Hughes, SI, Whittington, FM 2008. Fat deposition, fatty acid composition and meat quality: a review. Meat Science 78, 343358.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Cherfaoui Supplementary Material
Appendix

 Word (187 KB)
187 KB
WORD
Supplementary materials

Cherfaoui Supplementary Material
Table S2

 Word (47 KB)
47 KB

A grass-based diet favours muscle n-3 long-chain PUFA deposition without modifying gene expression of proteins involved in their synthesis or uptake in Charolais steers

  • M. Cherfaoui (a1), D. Durand (a1), M. Bonnet (a1), L. Bernard (a1), D. Bauchart (a1), I. Ortigues-Marty (a1) and D. Gruffat (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.