Skip to main content Accessibility help

Genetic variability of functional longevity in five rabbit lines

  • A. G. EL Nagar (a1) (a2), J. P. Sánchez (a3), M. Ragab (a1) (a4), C. Mínguez (a5) and M. Baselga (a1)...


The objectives of this study were to analyse the differences in the genetic determination of functional longevity in five Spanish lines of rabbits and to check how different systematic factors might affect this genetic determination. Four of the lines were maternal (lines A, V, H and LP), these lines were established selecting base generation animals according to different criteria, but in the subsequent generations all of them were selected for litter size at weaning. The other is the paternal line R, this line was constituted by selecting animals with an outstanding daily growth rate. The trait analysed, length of productive life, was the time in days between the date of the first positive pregnancy test and the date of culling or death of a doe. Four models extended from the Cox proportional hazard model were used to analyse data of each line separately and jointly. The complete model (Model 1) included the fixed effect of year-season (YS) combination, positive palpation order (OPP), that is, reproductive cycle, physiological status of the doe (PS) at service and number of kits born alive (NBA) in each kindling as time-dependent factors. The inbreeding coefficient was fitted as a continuous covariate and the animal’s additive genetic effect was also fitted to the model (Model 1). The other models were identical to Model 1 but excluding OPP (Model 2) or PS (Model 3) or NBA (Model 4), which were explored to assess the consequence on additive variance estimates of not correcting for these animal-dependent factors. Estimated effective heritabilities of longevity were 0.07 ± 0.03, 0.03 ± 0.02, 0.14 ± 0.09, 0.05 ± 0.04, 0.02 ± 0.01 and 0.04 ± 0.01 for lines A, V, H, LP, R and for the merged data set, respectively. Removing the PS from the model led to an increase in the estimated additive genetic variance in all lines (0.17 ± 0.05, 0.05 ± 0.03, 0.29 ± 0.19, 0.29 ± 0.20, 0.07 ± 0.04 and 0.05 ± 0.02 for lines A, V, H, LP, R and the merged data set, respectively). The highest hazard of death and/or culling was observed during the first two parities and decreased as the order of parity progressed. Does non-pregnant-non-lactating had the highest risk of death or culling. The does that had zero kits born alive incurred the highest risk, and this risk decreased as the NBA increased. In conclusion, the consideration of longevity as selection criterion for the studied rabbit lines is not recommended.


Corresponding author


Hide All
Blasco, A 2001. The Bayesian controversy in animal breeding. Journal of Animal Science 79, 20232046.
Boyle, L, Leonard, FC, Lynch, B and Brophy, P 1998. Sow culling patterns and sow welfare. Irish Veterinary Journal 51, 354357.
Casellas, J, Varona, L, Ibáñez-Escriche, N, Quintanilla, R and Noguera, JL 2008. Skew distribution of founder-specific inbreeding depression effects on the longevity of Landrace sows. Genetics Research Cambridge 90, 499508.
Cifre, P, Baselga, M, Gacia-Ximenez, F and Vicente, J 1998. Performance of hyperprolific rabbit line. I. Litter size traits. Journal of Animal Breeding and Genetics 115, 131.
EL Nagar, AG 2015. Genetic analysis of longevity in specialized lines of rabbits. PhD thesis, Universitat Politècnica de València, Valencia, Spain.
Engblom, L, Lundeheim, N, Schneider, MD, Dalin, AM and Andersson, K 2009. Genetics of crossbred sow longevity. Animal 3, 783790.
Estany, J, Baselga, M, Blasco, A and Camacho, J 1989. Mixed model methodology for the estimation of genetic response to selection in litter size of rabbits. Livestock Production Science 21, 6775.
Estany, J, Camacho, J, Baselga, M and Blasco, A 1992. Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution 24, 527537.
Fernández, EN, Sánchez, JP, Martíez, R, Legarra, A and Baselga, M 2017. Role of inbreeding depression, non-inbred dominance deviations and random year-season effect in genetic trends for prolificacy in closed rabbit lines. Journal of Animal Breeding and Genetics 134, 441452.
Friendship, RM, Wilson, MR, Almond, GW, McMillan, I, Hacker, RR, Pieper, R and Swaminathan, SS 1986. Sow wastage: reasons for and effect on productivity. Canadian Journal of Veterinary Research 50, 205208.
García-Ximénez, F, Vicente, JS, Cifre, P and Baselga, M 1996. Foundation of a maternal rabbit line using hysterectomy and embryo cryopreservation. In Proceedings of the 6th World Rabbit Congress, 9–12 July 1996, Toulouse, France, pp. 285288. Retrieved from
Garreau, H, Larzul, C and Ducrocq, V 2001. Analyse de longévité de la souche de lapins INRA 1077. In Proceedings of the 9émes Journées de la Recherche Cunicole, 28–29 Novembre 2001, Paris, France, pp. 217220. Retrieved from
Geweke, J 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In Bayesian statistics 4 (ed. Bernardo, JM, Berger, JO, Dawid, AP and Smith, AFM), pp. 169193. Oxford University Press, Oxford, UK.
Gilks, WR and Wild, P 1992. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41, 337348.
Larzul, C, Ducrocq, V, Tudela, F, Juin, H and Garreau, H 2014. The length of productive life can be modified through selection: an experimental demonstration in the rabbit. Journal of Animal Science 92, 23952401.
Lenoir, G, Maupin, M, Leloire, C and Garreau, H 2013. Analyse de la longévité des lapines d’une lignée commerciale. In Proceedings of the 15èmes Journées de la Recherche Cunicole, 19–20 Novembre 2013, Le Mans, France, pp. 181184. Retrieved from
Lucia, T, Dial, GD and Marsh, WE 1996. Patterns of female removal. I. Lifetime productivity for reproduction and performance-related culls. In Proceedings of the 14th International Pig Veterinary Society, 7–10 July 1996, Bologna, Italy, p. 540.
Mészáros, G, Pálos, J, Ducrocq, V and Sölkner, J 2010. Heritability of longevity in Large White and Landrace sows using continuous time and grouped data models. Journal of Genetics Selection Evolution 42, 113.
Piles, M, Garreau, H, Rafel, O, Larzul, C, Ramon, J and Ducrocq, V 2006. Survival analysis in two lines of rabbits selected for reproductive traits. Journal of Animal Science 84, 16581665.
Plummer, M, Best, N, Cowles, K and Vines, K 2006. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 711.
Ramon, J and Rafel, O 2002. Diez años de gestión global en España. In Proceedings of the 2th Congreso Internacional de Producción y Sanidad Animal, 5–8 November 2002, Expoaviga, Barcelona, Spain, pp. 113117.
Rinaldo, D and Bolet, G 1988. Effect of selection for litter size at weaning on reproductive life of female rabbits. In Proceedings of the 4th World Rabbit Congress, 10–14 October 1988, Budapest, Hungary, pp. 269275.
Rosell, JM 2003. Health status of commercial rabbitries in the Iberian Peninsula. A practitioners study. World Rabbit Science 11, 157169.
Sánchez, JP, Baselga, M, Peiró, R and Silvestre, MA 2004. Analysis of factors influencing longevity of rabbit does. Livestock Production Science 90, 227234.
Sánchez, JP, Baselga, M and Ducrocq, V. 2006a. Genetic and environmental correlations between longevity and litter size in rabbits. Journal of Animal Breeding and Genetics 123, 180185.
Sánchez, JP, Korsgaard, IR, Damgaard, LH and Baselga, M 2006b. Analysis of rabbit doe longevity using a semiparametric log-Normal animal frailty model with time-dependent covariates. Genetics Selection Evolution 38, 281295.
Sánchez, JP, Theilgaard, P, Mínguez, C and Baselga, M 2008. Constitution and evaluation of a long-lived productive rabbit line. Journal of Animal Science 86, 515525.
Sánchez, JP, de la Fuente, LF and Rosell, JM 2012. Health and body condition of lactating females on rabbit farms. Journal of Animal Science 90, 23532361.
Serenius, T and Stalder, KJ 2004. Genetics of length of productive life and lifetime prolificacy in the Finnish Landrace and Large White pig populations. Journal of Animal Science 82, 31113117.
Serenius, T, Stalder, KJ and Puonti, M 2006. Impact of dominance effects on sow longevity. Journal of Animal Breeding and Genetics 123, 355361.
Sorensen, D and Gianola, D 2002. Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer Science and Business Media, New York, USA.
Tarrés, J, Bidanel, JP, Hofer, A and Ducrocq, V 2006. Analysis of longevity and exterior traits on Large White sows in Switzerland. Journal of Animal Science 84, 29142924.
Tudela, F, Hurtaud, J, Garreau, H and Rochambeau, H 2003. Comparaison des performances zootechniques de femelles parentales issues d’une souche témoin et d’une souche sélectionnée sur la productivité numérique. In Proceedings of the 10émes Journées de la Recherche Cunicole, 19–20 November, Paris, France, pp. 5356.
Yazdi, M, Rydhmer, L, Ringmar-Cederberg, E, Lundeheim, N and Johansson, K 2000. Genetic study of longevity in Swedish Landrace sows. Livestock Production Science 63, 255264.
Yazdi, MH, Visscher, PM, Ducrocq, V and Thompson, R 2002. Heritability, reliability of genetic evaluations and response to selection in proportional hazard models. Journal of Dairy Science 85, 15631577.


Genetic variability of functional longevity in five rabbit lines

  • A. G. EL Nagar (a1) (a2), J. P. Sánchez (a3), M. Ragab (a1) (a4), C. Mínguez (a5) and M. Baselga (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed