Skip to main content Accessibility help
×
Home

Effects of increasing amounts of extruded linseed in the diet on apparent ruminal synthesis of some B vitamins in dairy cows

  • V. Beaudet (a1) (a2), R. Gervais (a2), P. Y. Chouinard (a2), B. Graulet (a3), C. Martin (a3), M. Doreau (a3) and C. L. Girard (a1)...

Abstract

Many studies have shown that metabolic efficiency of ruminants can be significantly decreased when B-vitamin supply is insufficient. Under the present state of knowledge, the amounts of B vitamins available for intestinal absorption cannot be predicted based on diet composition. Therefore, in an attempt to increase our understanding of the effects of dietary factors, on B-vitamin supply for dairy cows, the effects of increasing amounts of extruded linseed in diets based on hay (permanent grassland hay, H; Experiment 1) or corn silage (CS; Experiment 2) on apparent ruminal synthesis (ARS) of thiamin, riboflavin, niacin, vitamin B6, folates and vitamin B12 were evaluated. In each experiment, four lactating Holstein cows fitted with cannulas in the rumen and the proximal duodenum were used in a 4 × 4 Latin square design. In both experiments, the dietary treatments consisted of an increasing supply of extruded linseed representing 0%, 5%, 10% or 15% of diet DM. The forage : concentrate ratios were 50 : 50 and 60 : 40 for Experiments 1 and 2, respectively. Duodenal flow was determined using YbCl3 as a marker. The ARS of each B vitamin was calculated as duodenal flow – daily intake. In both experiments, treatments did not affect thiamin, riboflavin, niacin and vitamin B12 duodenal flow or ARS. Increasing the dietary concentration of extruded linseed decreased folate intake in Experiment 1 and vitamin B6 intake in Experiment 2 but resulted in a greater duodenal flow of vitamin B6 and folates regardless of the forage used in basal diet. Greater dietary linseed concentrations decreased vitamin B6 apparent degradation in the rumen in CS-based diet only and increased folate ARS in both H- and CS-based diets. Increasing linseed concentration of isonitrogenous and isoenergetic diets increased vitamin B6 and folate supply to dairy cows, both with H- and CS-based diets.

Copyright

Corresponding author

References

Hide All
Beaudet, V, Gervais, R, Graulet, B, Nozière, P, Doreau, M, Fanchone, A and Girard, CL 2016. Effects of dietary nitrogen levels and energy sources on apparent ruminal synthesis of B vitamins in dairy cows. Journal of Dairy Science 99, 27302739.
Bechdel, SI, Eckles, CH and Palmer, LS 1926. The vitamin B requirement of the calf. Journal of Dairy Science 9, 409438.
Bechdel, SI, Honeywell, HE, Dutcher, RA and Knutsen, MH 1928. Synthesis of vitamin B in the rumen of the cow. Journal of Biological Chemistry 80, 231238.
Benchaar, C, Hassanat, F, Martineau, R and Gervais, R 2015. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production. Journal of Dairy Science 98, 79938008.
Castagnino, DS, Harvatine, KJ, Allen, MS, Gervais, R, Chouinard, PY and Girard, CL 2017. Short communication: Effect of fatty acid supplements on apparent ruminal synthesis of B vitamins in lactating dairy cows. Journal of Dairy Science 100, 81658169.
Chen, B, Wang, C, Wang, YM and Liu, JX 2011. Effect of biotin on milk performance of dairy cattle: a meta-analysis. Journal of Dairy Science 94, 35373546.
Combs, GF 2012. The vitamins, 4th edition. Elsevier Inc., Waltham, MA, USA.
Doreau, M and Ferlay, A 1995. Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livestock Production Science 43, 97110.
Fanchone, A, Nozière, P, Portelli, J, Duriot, B, Largeau, V and Doreau, M 2013. Effects of nitrogen underfeeding and energy source on nitrogen ruminal metabolism, digestion, and nitrogen partitioning in dairy cows. Journal of Animal Science 91, 895906.
Ferlay, A, Doreau, M, Martin, C and Chilliard, Y 2013. Effects of incremental amounts of extruded linseed on the milk fatty acid composition of dairy cows receiving hay or corn silage. Journal of Dairy Science 96, 65776595.
Graulet, B, Matte, JJ, Desrochers, A, Doepel, L, Palin, MF and Girard, CL 2007. Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation. Journal of Dairy Science 90, 34423455.
Harvatine, K and Allen, MS 2006. Effects of fatty acid supplements on ruminal and total tract nutrient digestion in lactating dairy cows. Journal of Dairy Science 89, 10921103.
Institut National de la Recherche Agronomique (INRA) 2007. Alimentation des bovins, ovins et caprins. Besoins des animaux - valeurs des aliments. Quae Editions, Paris, France.
Johnson, KA and Johnson, DE 1995. Methane emissions from cattle. Journal of Animal Science 73, 24832492.
Kon, SK and Porter, JWG 1954. The intestinal synthesis of vitamins in the ruminant. Vitamins and Hormones 12, 5368.
Martin, C, Ferlay, A, Mosoni, P, Rochette, Y, Chilliard, Y and Doreau, M 2016. Increasing linseed supply in dairy cow diets based on hay or corn silage: effect on enteric methane emission, rumen microbial fermentation, and digestion. Journal of Dairy Science, 99, 34353456.
Martin, C, Morgavi, DP and Doreau, M 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351365.
McDowell, LR 2000. Vitamins in animal and human nutrition, 2nd edition. Iowa State University Press, Ames, IA, USA.
Rérat, A, Molle, J and LeBars, H 1958. Mise en évidence chez le mouton de la perméabilité du rumen aux vitamines B et conditions de leur absorption à ce niveau. Académie des Sciences de Paris. Comptes Rendus 246, 20512054.
Sauvant, D, Perez, JM and Tran, G 2002. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage: porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poissons. Institut National de la Recherche Agronomique, Paris, France.
Schwab, EC, Caraviello, DZ and Shaver, RD 2005. Review: a meta-analysis of lactation responses to supplemental dietary niacin in dairy cows. The Professional Animal Scientist 21, 239247.
Schwab, EC, Schwab, CG, Shaver, RD, Girard, CL, Putnam, DE and Whitehouse, NL 2006. Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. Journal of Dairy Science 89, 174187.
Shaver, RD and Bal, MA 2000. Effect of dietary thiamin supplementation on milk production by dairy cows. Journal of Dairy Science 83, 23352340.
Statistical Analysis System (SAS) 2008. SAS userʼs guide: statistics, Version 9.2 edition. SAS Institute Inc., Cary, NC, USA.
Van Nevel, C, Demeyer, D and De Smet, S 1993. Effect of lipids on rumen fermentation and kinetics of rumen digesta in sheep fed a restricted diet. Annales de Zootechnie 42, 156.
Veissier, I 1999. Expérimentation animale: biologie, éthique, réglementation. Productions Animales 12, 365375.

Keywords

Effects of increasing amounts of extruded linseed in the diet on apparent ruminal synthesis of some B vitamins in dairy cows

  • V. Beaudet (a1) (a2), R. Gervais (a2), P. Y. Chouinard (a2), B. Graulet (a3), C. Martin (a3), M. Doreau (a3) and C. L. Girard (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.