Skip to main content Accessibility help

Effect of sex, dietary glycerol or dietary fat during late fattening, on fatty acid composition and positional distribution of fatty acids within the triglyceride in pigs

  • J. Segura (a1), M. I. Cambero (a2), L. Cámara (a3) (a4), C. Loriente (a5), G. G. Mateos (a3) (a4) and C. J. López-Bote (a1) (a2)...


The effect of sex, source of saturated fat (lard v. palm oil) and glycerol inclusion in the fattening diet on composition and fatty acid positional distribution in the triglyceride molecule was studied in pigs from 78 to 110 kg BW. Average daily gain and carcass characteristics, including ham and loin weight, were not affected by dietary treatment but sex affected backfat depth (P<0.01). A significant interaction between sex and glycerol inclusion was observed; dietary glycerol increased lean content in gilts but not in barrows (P<0.05 for the interaction). Individual and total saturated fatty acid (SFA) concentrations were greater in barrows than in gilts. In contrast, the concentration of total polyunsaturated fatty acids (PUFA) and of C18:2n-6, C18:3n-3, C20:3n-9 and C20:4n-6 in the intramuscular fat (IMF) was higher (P<0.05) in gilts than in barrows. Sex did not affect total monounsaturated fatty acids (MUFA) concentration in the IMF. The proportion of SFA in the subcutaneous fat (SF) was higher in barrows than in gilts (P<0.001). Within the individual SFA, sex affected only the concentrations of C14:0 and C16:0 (P<0.001). Dietary fat did not affect total SFA or PUFA concentrations of the IMF but the subcutaneous total MUFA concentration tended to be higher (P=0.079) in pigs fed lard than in pigs fed palm oil. Dietary glycerol increased total MUFA and C18:1n-9 concentration in the IMF and increased total MUFA and decreased C18:2n-6, C18:3n-3 and total PUFA concentrations in the SF. The data indicate that altering the fatty acid composition of the triglyceride molecule at the 2-position, by dietary intervention during the fattening phase, is very limited.


Corresponding author



Hide All
Alonso, V, Campo, MM, Español, S, Roncalés, P and Beltrán, JA 2009. Effect of crossbreeding and gender on meat quality and fatty acid composition in pork. Meat Science 81, 209217.
Barea, R, Isabel, B, Nieto, R, López-Bote, C and Aguilera, JF 2013. Evolution of the fatty acid profile of subcutaneous back-fat adipose tissue in growing Iberian and Landrace×Large White pigs. Animal 7, 688698.
Berry, SE 2009. Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fat: an overview and implications for cardiovascular disease. Nutrition Research Reviews 22, 317.
Boletín Oficial del Estado 2007. Ley 32/2007 de 7 de Noviembre para el cuidado de los animales, en su explotación, transporte, experimentación y sacrificio. BOE 268, 4591445920.
Busk, H, Olsen, EV and Brondum, J 1999. Determination of lean meat in pig carcasses with the Autofom classification system. Meat Science 52, 307314.
Candek-Potokar, M and Skrlep, M 2012. Factors in pig production that impact the quality of dry-cured ham: a review. Animal 6, 327338.
Christie, WW 1985. Structure of the triacyl-sn-glycerols in the plasma and milk of the rat and rabbit. Journal of Dairy Research 52, 219222.
Christie, WW and Clapperton, JL 1982. Structures of the triacylglycerols of human milk and some substitutes. Journal of the Society of Dairy Technology 35, 2224.
Christie, WW and Moore, JH 1970. A comparison of the structures of triglycerides from various pig tissues. Biochimica and Biophysica Acta 210, 4656.
D’Arrigo, M, Hoz, L, López-Bote, CJ, Cambero, I, Pin, C, Rey, A and Ordonez, JA 2002. Effect of dietary linseed oil and α-tocopherol on selected properties of pig fat. Canadian Journal of Animal Science 82, 339346.
De Blas, C, Gasa, J and Mateos, GG 2013. Necesidades Nutricionales para Ganado Porcino. Fundación Española Desarrollo Nutrición Animal, Madrid, Spain.
De Blas, C, Mateos, GG and Rebollar, PG 2010. Normas FEDNA de Composición y Valor Nutritivo de Alimentos para la Fabricación de Piensos Compuestos, 2nd edition. Fundación Española Desarrollo Nutrición Animal, Madrid, Spain.
Doppenberg, J and Van der Aar, PJ 2007. Biofuels: implications for the feed industry. Wageningen Academic Publisher, The Netherlands.
Duran-Montgé, P, Realini, CE, Barroeta, AC, Lizardo, R and Esteve-Garcia, E 2008. Tissue fatty acid composition of pigs fed different fat sources. Animal 2, 17531762.
Farnworth, ER and Kramer, JKG 1987. Fat metabolism in growing swine: a review. Canadian Journal of Animal Science 67, 301318.
Garcés, R and Mancha, M 1993. One-step lipid extraction and fatty-acid methyl-esters preparation from fresh plant-tissues. Analytical Biochemistry 211, 139143.
Gouk, SW, Cheng, SF, Mok, JSL, Ong, ASH and Chuah, CH 2013. Long-chain SFA at the Sn-1, 3 positions of TAG reduce body fat deposition in C57BL/6 mice. British Journal of Nutrition 110, 19871995.
Hunter, JE 2001. Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 36, 655668.
Innis, SM 2011. Dietary triacylglycerol structure and its role in infant nutrition. Advances in Nutrition 2, 275283.
Innis, SM, Dyer, RA and Lien, EL 1997. Formula containing randomized fats with palmitic acid (C16:0) in the 2-position increases C16:0 in the 2-position of plasma and chylomicron triglycerides in formula-fed piglets to levels approaching those of the piglet fed sow’s milk. Journal of Nutrition 127, 13621370.
Innis, SM and Nelson, CM 2013. Dietary triacylglycerols rich in Sn-2 palmitate alter post-prandial lipoprotein and unesterified fatty acids in term infants. Prostaglandins, Leukotrienes and Essential Fatty Acids 89, 145151.
Isabel, B, López-Bote, CJ, de la Hoz, L, Timón, M, García, C and Ruiz, J 2003. Effects of feeding elevated concentrations of monounsaturated fatty acids and vitamin E to swine on characteristics of dry cured hams. Meat Science 64, 475482.
Kijora, C, Bergner, H, Kupsch, RD and Hageman, L 1995. Glycerol as feed component in diets of fattening pigs. Archives in Animal Nutrition 47, 345360.
Kijora, C and Kupsch, RD 1996. Evaluation of technical glycerols from “biodiesel” production as a feed component in fattening of pigs. Fett/Lipid 98, 240245.
Kijora, C, Kupsch, RD, Bergner, H, Wenk, C and Prabucki, AL 1997. Comparative investigation on the utilization of glycerol, free fatty acids, free fatty acids in combination with glycerol and vegetable oil in fattening of pigs. Journal of Animal Physiology and Animal Nutrition 77, 127138.
Lammers, PJ, Kerr, BJ, Weber, TE, Bregendahl, K, Lonergan, SM and Prusa, DU 2008. Growth performance, carcass characteristics, meat quality and tissue histology of growing pigs fed crude glycerin-supplemented diets. Journal of Animal Science 86, 29622970.
Latorre, MA, Ripoll, G, García-Belenguer, E and Ariño, L 2009. The increase of slaughter weight in gilts as strategy to optimize the production of Spanish high quality dry-cured ham. Journal of Animal Science 87, 14641471.
López-Bote, CJ 1998. Sustained utilization of the Iberian pig breed. Meat Science 49, S17S27.
López-Bote, CJ, Isabel, B and Daza, A 2002. Partial replacement of poly- with monounsaturated fatty acids and vitamin E supplementation in pig diets: effect on fatty acid composition of subcutaneous and intramuscular fat and on fat and lean firmness. Animal Science 75, 349358.
Mourot, J, Aumaitre, A, Mounier, A, Peiniau, P and Francois, AC 1994. Nutritional and physiological effects of dietary glycerol in the growing pig. Consequences on fatty tissues and post mortem muscular parameters. Livestock Production Science 38, 237244.
Mu, HL and Hoy, CE 2004. The digestion of dietary triacylglycerols. Progress in Lipid Research 43, 105133.
Mu, H and Porsgaard, T 2005. The metabolism of structured triacylglycerols. Progress in Lipid Research 44, 430448.
Nuernberga, K, Dannenbergera, D, Nuernberga, G, Endera, K, Voigta, J, Scollanb, ND, Wood, JD, Nutec, GR and Richardson, RI 2005. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livestock Production Science 94, 137147.
Óvilo, C, Benítez, R, Fernández, A, Isabel, B, Núñez, Y, Fernández, AI, Rodríguez, C, Daza, A, Silió, L and López-Bote, C 2014. Dietary energy source largely affects tissue fatty acid composition but has minor influence on gene transcription in Iberian pigs. Journal of Animal Science 92, 939954.
Peinado, J, Medel, P, Fuentetaja, A and Mateos, GG 2008. Influence of sex and castration of females on growth performance and carcass and meat quality of heavy pigs destined for the dry-cured industry. Journal of Animal Science 86, 14101417.
Perona, JS and Ruíz-Gutiérrez, V 2004. Analysis of neutral lipids: triacylglycerols. In Handbook of food analysis (ed. LML Nollet), pp. 275312. Marcel Decker, New York.
Piedrafita, J, Christian, LL and Lonergan, SM 2001. Fatty acid profiles in three stress genotypes of swine and relationships with performance, carcass and meat quality traits. Meat Science 57, 7177.
Ponnampalam, EN, Lewandowski, P, Nesaratnam, K, Dunshea, FR and Gill, H 2011. Differential effects of natural palm oil, chemically-and enzymatically-modified palm oil on weight gain, blood lipid metabolites and fat deposition in a pediatric pig model. Nutrition Journal 10, 17.
Schieck, SJ, Shurson, GC, Kerr, BJ and Johnston, LJ 2010. Evaluation of glycerol, a biodiesel coproduct, in grow-finish pig diets to support growth and pork quality. Journal of Animal Science 88, 39273935.
Segura, J, Escudero, R, Romero de Ávila, MD, Cambero, MI and López-Bote, CJ 2015. Effect of fatty acid composition and positional distribution within the triglyceride on selected physical properties of dry-cured ham subcutaneous fat. Meat Science 103, 9095.
Segura, J and López-Bote, CJ 2014. A laboratory efficient method for intramuscular fat analysis. Food Chemistry 145, 821825.
Serrano, MP, Valencia, DG, Fuentetaja, A, Lázaro, R and Mateos, GG 2009. Influence of feed restriction and sex on growth performance and carcass and meat quality of Iberian pigs reared indoors. Journal of Animal Science 87, 16761685.
Serrano, MP, Valencia, DG, Nieto, M, Lázaro, R and Matéos, GG 2008. Influence of sex and terminal sire line on performance and carcass and meat quality of Iberian pigs reared under intensive production systems. Meat Science 78, 420428.
Small, DM 1991. The effects of glyceride structure on absorption and metabolism. Annual Review of Nutrition 11, 412434.
Smith, SB, Yang, A, Larsen, TW and Tume, RK 1998. Positional analysis of triacylglycerol from bovine adipose tissue lipids varying in degree of saturation. Lipids 33, 197207.
Warnants, N, Van Oeckel, MJ and Boucque, CV 1999. Incorporation of dietary polyunsaturated fatty acid into pork fatty tissues. Journal of Animal Science 77, 24782490.
Wood, JD, Richardson, RI, Nute, GR, Fisher, AV, Campo, MM, Kasapidou, E, Sheard, PR and Enser, M 2004. Effects of fatty acids on meat quality: a review. Meat Science 66, 2132.
Zijlstra, RT, Menjivar, K, Lawrence, E and Beltranena, E 2009. The effect of feeding crude glycerol on growth performance and nutrient digestibility in weaned pigs. Canadian Journal of Animal Science 89, 8589.


Effect of sex, dietary glycerol or dietary fat during late fattening, on fatty acid composition and positional distribution of fatty acids within the triglyceride in pigs

  • J. Segura (a1), M. I. Cambero (a2), L. Cámara (a3) (a4), C. Loriente (a5), G. G. Mateos (a3) (a4) and C. J. López-Bote (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed