Skip to main content Accessibility help

Comparison of effects of four weaning methods on health and performance of beef calves

  • J. D. Taylor (a1), J. N. Gilliam (a2), G. Mourer (a3) and C. Stansberry (a4)


Weaning of beef calves is a stressful event that negatively impacts health and performance. A variety of interventions have been proposed to reduce stress and improve gains following weaning. This study used 288 7- to 8-month-old calves from two separate locations, to examine four different weaning strategies, as well as the impact of shipment. Calves were blocked by weight and sex, and then randomly assigned to one of four treatments: abrupt weaning (AW), where calves were separated from the dam on day 0 (D0) and allowed no further contact with the dam; fence line (FL), where calves were weaned on D0 but had fence line contact with dams for 7 days; nose flap (NF), where on day -6 calves received a nose flap that interferes with suckling, then had the flap removed and were weaned from the dam on D0; and intermittent separation (SEP), where calves were removed from dams for 24-h intervals on day -13 and day -6, then weaned on D0, but allowed fence line contact with the dam for 7 days. Each treatment group was further divided into two subgroups, one of which was shipped early (D0 for AW, day 7 for others) or shipped later (day 28). Body weight and sickness were recorded for all groups. Results showed a negative impact on gain for early shipping compared to later shipping, and poorer gain in AW calves than most other treatments. Results of the analyses of morbidity were inconclusive. This study found that delayed shipment following FL weaning improves performance under common management conditions for the US cow–calf industry.


Corresponding author


Hide All

Present address: Ditch Witch 1959 W. Fir Avenue, Perry, OK 73077-0066, USA.



Hide All
Bello, NM and Renter, DG 2018.Invited review: reproducible research from noisy data: revisiting key statistical principles for the animal sciences. Journal of Dairy Science 101, 56795701.
Burke, NC, Scaglia, G, Boland, HT and Swecker, WS Jr 2009. Influence of two-stage weaning with subsequent transport on body weight, plasma lipid peroxidation, plasma selenium, and on leukocyte glutathione peroxidase and glutathione reductase activity in beef calves. Veterinary Immunology and Immunopathology 127, 365370.
Campistol, C, Kattesh, HG, Waller, JC, Rawls, EL, Arthington, JD, Carroll, JA, Pighetti, GM and Saxton, AM 2016. Effects of pre-weaning feed supplementation and total versus fenceline weaning on the physiology and performance of beef steers. International Journal of Livestock Production 7, 4854.
Enriquez, D, Hotzel, MJ and Ungerfeld, R 2011. Minimising the stress of weaning of beef calves: a review. Acta Veterinaria Scandanavica 53, 28.
Enriquez, DH, Ungerfeld, R, Quintans, G, Guidoni, AL and Hotzel, MJ 2010. The effects of alternative weaning methods on behaviour in beef calves. Livestock Science 128, 2027.
Fernandes, CG, Schild, AL, Riet-Correa, F, Baialardi, CEG and Stigger, AL 2000. Pituitary abscess in young calves associated with the use of a controlled suckling device. Journal of Veterinary Diagnostic Investigation 12, 7071.
Haley, DB, Bailey, DW and Stookey, JM 2005. The effects of weaning beef calves in two stages on their behavior and growth rate. Journal of Animal Science 83, 22052214.
Hilton, WM 2015. Management of preconditioned calves and impacts of preconditioning. Veterinary Clinics of North America: Food Animal 31, 197207.
Hilton, WM and Olynk, NJ 2011. Profitability of preconditioning: lessons learned from an 11-year case study of an Indiana beef herd. Bovine Practitioner 45, 4050.
Lambertz, C, Bowen, PR, Erhardt, G and Gauly, M 2015. Effects of weaning beef cattle in two stages or by abrupt separation on nasal abrasions, behaviour, and weight gain. Animal Production Science 55, 786792.
Lippolis, KD, Ahola, JK, Mayo, CE, Fischer, MC and Callan, RJ 2016. Effects of two-stage weaning with nose flap devices applied to calves on cow body condition, calf performance, and calf humoral immune response. Journal of Animal Science 94, 816823.
Price, EO, Harris, JE, Borgwardt, RE, Sween, ML and Connor, JM 2003. Fenceline contact of beef calves with their dams at weaning reduces the negative effects of separation on behavior and growth rate. Journal of Animal Science 81, 116121.
Step, DL, Krehbiel, CR, DePra, HA, Cranston, JJ, Fulton, RW, Kirkpatrick, JG, Gill, DR, Payton, ME, Montelongo, MA and Confer, AW 2008. Effects of commingling beef calves from different sources and weaning protocols during a forty-two-day receiving period on performance and bovine respiratory disease. Journal of Animal Science 86, 31463158.
Taylor, JD, Fulton, RW, Lehenbauer, TW, Step, DL and Confer, AW 2010. The epidemiology of bovine respiratory disease: what is the evidence for preventive measures? Canadian Veterinary Journal 51, 13511359.


Type Description Title
Supplementary materials

Taylor et al. supplementary material
Taylor et al. supplementary material 1

 PDF (1.7 MB)
1.7 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed