Skip to main content Accessibility help

Analysis of single nucleotide polymorphisms variation associated with important economic and computed tomography measured traits in Texel sheep

  • D. Garza Hernandez (a1), S. Mucha (a1) (a2), G. Banos (a1) (a3), K. Kaseja (a1), K. Moore (a1), N. Lambe (a1), J. Yates (a4) and L. Bunger (a1)...


Sheep are an important part of the global agricultural economy. Growth and meat production traits are significant economic traits in sheep. The Texel breed is the most popular terminal sire breed in the UK, mainly selected for muscle growth and lean carcasses. This is a study based on a genome-wide association approach that investigates the links between some economically important traits, including computed tomography (CT) measurements, and molecular polymorphisms in UK Texel sheep. Our main aim was to identify single nucleotide polymorphisms (SNP) associated with growth, carcass, health and welfare traits of the Texel sheep breed. This study used data from 384 Texel rams. Data comprised ten traits, including two CT measured traits. The phenotypic data were placed in four categories: growth traits, carcass traits, health traits and welfare traits. De-regressed estimated breeding values (EBV) for these traits together with sire genotypes derived with the Ovine 50 K SNP array of Illumina were jointly analysed in a genome wide association analysis. Eight novel chromosome-wise significant associations were found for carcass, growth, health and welfare traits. Three significant markers were intronic variants and the remainder intergenic variants. This study is a first step to search for genomic regions controlling CT-based productivity traits related to body and carcass composition in a terminal sire sheep breed using a 50 K SNP genome-wide array. Results are important for the further development of strategies to identify causal variants associated with CT measures and other commercial traits in sheep. Independent studies are needed to confirm these results and identify candidate genes for the studied traits.


Corresponding author


Hide All

Present address: Universidad Autónoma de Nuevo León (UANL), Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza 66451, N.L., México.



Hide All
Astle, W and Balding, D 2009. Population Structure and cryptic relatedness in genetic association studies. Statistical Science 24, 451471.
Atlija, M, Arranz, JJ, Martinez-Valladares, M and Gutierrez-Gil, B 2016. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genetics Selection Evolution 48, 4.
Aulchenko, YS, Ripke, S, Isaacs, A and van Duijn, CM 2007. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 12941296.
Beh, KJ, Hulme, DJ, Callaghan, MJ, Leish, Z, Lenane, I, Windon, RG and Maddox, JF 2002. A genome scan for quantitative trait loci affecting resistance to Trichostrongylus colubriformis in sheep. Animal Genetics 33, 97106.
Bolormaa, S, Hayes, BJ, van der Werf, JH, Pethick, D, Goddard, ME and Daetwyler, HD 2016. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genomics 17, 224.
Brown, DJ 2007. Variance components for lambing ease and gestation length in sheep. In Proceedings of the 17th Conference of the Association for the Advancement of Animal Breeding and Genetics, 23–26 September 2007, Armidale, Australia, pp. 268–271.
Bünger, L, Macfarlane, JM, Lambe, NR, Conington, J, Mclean, KA, Moore, K, Glasbey, CA and Simm, G 2011. Use of X-ray computed tomography (CT) in UK sheep production and breeding. In CT Scanning – Techniques and Applications (ed. K Subburaj), pp. 329–348. InTech, Rijeka, Croatia.
Cavanagh, CR, Jonas, E, Hobbs, M, Thomson, PC, Tammen, I and Raadsma, HW 2010. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL. Genetics, Selection, Evolution 42, 36.
Donaldson, CL, Lambe, NR, Maltin, CA, Knott, S and Bunger, L 2014. Effect of the Texel muscling QTL (TM-QTL) on spine characteristics in purebred Texel lambs. Small Ruminant Research 117, 3440.
Fikse, WF and Banos, G 2001. Weighting factors of sire daughter information in international genetic evaluations. Journal of Dairy Science 84, 17591767.
Georges, M 2007. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals. Annual Review of Genomics and Human Genetics 8, 131162.
Gianola, D, Fariello, MI, Naya, H and Schon, CC 2016. Genome-wide association studies with a genomic relationship matrix: a case study with wheat and arabidopsis. G3 (Bethesda) 6, 32413256.
Goh, L, Yap, VB, Amos, C, Wu, X, Broderick, P, Gorlov, I, Gu, J, Eisen, T, Dong, Q, Zhang, Q, Gu, X, Vijayakrishnan, J, Sullivan, K, Matakidou, A, Wang, Y, Mills, G, Doheny, K, Tsai, Y, Chen, W, Shete, S, Spitz, M, Houlston, R, Barrett, J, Hansoul, S, Nicolae, D, Cho, J, Duerr, R, Rioux, J, Brant, S, Silverberg, M, Taylor, K, Barmada, M, Bitton, A, Dassopoulos, T, Datta, L, Green, T, Griffiths, A, Kistner, E, Murtha, M, Regueiro, M, Rotter, J, Schumm, L, Steinhart, A, Targan, S, Xavier, R, Libioulle, C, Sandor, C, Lathrop, M, Belaiche, J, Dewit, O, Gut, I, Heath, S, Laukens, D, Mni, M, Rutgeerts, P, Gossum, AV, Zelenika, D, Franchimont, D, Hugot, J, Vos, Md, Vermeire, S, Louis, E, Belgian-French, I, Cardon, L, Anderson, C, Drummond, H, Nimmo, E, Ahmad, T, Prescott, N, Onnie, C, Fisher, S, Marchini, J, Ghori, J, Bumpstead, S, Gwilliam, R, Tremelling, M, Deloukas, P, Mansfield, J, Jewell, D, Satsangi, J, Mathew, C, Parkes, M, Georges, M, Daly, M, Bernardo, MD, Crowther-Swanepoel, D, Broderick, P, Webb, E, Sellick, G, Wild, R, Sullivan, K, Vijayakrishnan, J, Wang, Y, Pittman, A, Sunter, N, Hall, A, Dyer, M, Matutes, E, Dearden, C, Mainou-Fowler, T, Jackson, G, Summerfield, G, Harris, R, Pettitt, A, Hillmen, P, Allsup, D, Bailey, J, Pratt, G, Pepper, C, Fegan, C, Allan, J, Catovsky, D, Houlston, R, Frayling, T, Nair, R, Duffin, K, Helms, C, Ding, J, Stuart, P, Goldgar, D, Gudjonsson, J, Li, Y, Tejasvi, T, Feng, B, Ruether, A, Schreiber, S, Weichenthal, M, Gladman, D, Rahman, P, Schrodi, S, Prahalad, S, Guthery, S, Fischer, J, Liao, W, Kwok, P, Menter, A, Lathrop, G, Wise, C, Begovich, A, Voorhees, J, Elder, J, Krueger, G, Bowcock, A, Abecasis, G, Bakker, Pd, Ferreira, M, Jia, X, Neale, B, Raychaudhuri, S, Voight, B, Feingold, E, Diao, G, Lin, D, Labbe, A, Wormald, H, Peng, B, Yu, R, Dehoff, K, Amos, C, Zhang, F, Liu, J, Chen, J, Deng, H, Purcell, S, Neale, B, Todd-Brown, K, Thomas, L, Ferreira, M, Bender, D, Maller, J, Sklar, P, Bakker, Pd, Daly, M and Sham, P 2009. Effects of normalization on quantitative traits in association test. BMC Bioinformatics 10, 415.
Hayes, B and Goddard, ME 2010. Genome-wide association and genomic selection in animal breeding. Genome 53, 876883.
Hopkins, A and Lobley, M 2009. A scientific review of the impact of UK ruminant livestock on greenhouse gas emissions. CRPR research report. Centre for Rural Policy Research, University of Exeter, Exeter, UK.
Hu, ZL, Park, CA, Wu, XL and Reecy, JM 2013. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Research 41, D871D879.
Jairath, L, Dekkers, JC, Schaeffer, LR, Liu, Z, Burnside, EB and Kolstad, B 1998. Genetic Evaluation for Herd Life in Canada. Journal of Dairy Science 81, 550562.
Jiang, Y, Xie, M, Chen, W, Talbot, R, Maddox, JF, Faraut, T, Wu, C, Muzny, DM, Li, Y, Zhang, W, Stanton, JA, Brauning, R, Barris, WC, Hourlier, T, Aken, BL, Searle, SM, Adelson, DL, Bian, C, Cam, GR, Chen, Y, Cheng, S, DeSilva, U, Dixen, K, Dong, Y, Fan, G, Franklin, IR, Fu, S, Fuentes-Utrilla, P, Guan, R, Highland, MA, Holder, ME, Huang, G, Ingham, AB, Jhangiani, SN, Kalra, D, Kovar, CL, Lee, SL, Liu, W, Liu, X, Lu, C, Lv, T, Mathew, T, McWilliam, S, Menzies, M, Pan, S, Robelin, D, Servin, B, Townley, D, Wang, W, Wei, B, White, SN, Yang, X, Ye, C, Yue, Y, Zeng, P, Zhou, Q, Hansen, JB, Kristiansen, K, Gibbs, RA, Flicek, P, Warkup, CC, Jones, HE, Oddy, VH, Nicholas, FW, McEwan, JC, Kijas, JW, Wang, J, Worley, KC, Archibald, AL, Cockett, N, Xu, X, Wang, W and Dalrymple, BP 2014. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344, 11681173.
Jones, HE, Lewis, RM, Young, MJ and Wolf, BT 2002. The use of X-ray computer tomography for measuring the muscularity of live sheep. Animal Science 75, 387399.
Lewis, R 2004. Genetic lessons from the United Kingdom. Paper presented at the Virginia-North Carolina Shepherds’ Symposium, 9–10 January 2004, Blacksburg, VA, USA, pp. 24–34.
Lidauer, MMK, Mantysaari, E and Stranden, I 2011. MiX99: solving large mixed model equations manual. MTT, Jokioinen.
Macfarlane, JM, Lewis, RM, Emmans, GC, Young, MJ and Simm, G 2006. Predicting carcass composition of terminal sire sheep using X-ray computed tomography. Animal Science 82, 289300.
Macfarlane, JM, Lewis, RM, Emmans, GC, Young, MJ and Simm, G 2009. Predicting tissue distribution and partitioning in terminal sire sheep using x-ray computed tomography. J Anim Sci 87, 107118.
Marshall, K, Maddox, JF, Lee, SH, Zhang, Y, Kahn, L, Graser, HU, Gondro, C, Walkden-Brown, SW and Van Der Werf, JHJ 2009. Genetic mapping of quantitative trait loci for resistance to Haemonchus contortus in sheep. Animal Genetics 40, 262272.
Matika, O, Riggio, V, Anselme-Moizan, M, Law, AS, Pong-Wong, R, Archibald, AL and Bishop, SC 2016. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genetics Selection Evolution 48, 11.
Pollott, GE 2014. The breeding structure of the British sheep industry 2012. Defra, London, UK.
R Core Team 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Raadsma, HW, Thomson, PC, Zenger, KR, Cavanagh, C, Lam, MK, Jonas, E, Jones, M, Attard, G, Palmer, D and Nicholas, FW 2009. Mapping quantitative trait loci (QTL) in sheep. I. A new male framework linkage map and QTL for growth rate and body weight. Genetic Selection Evolution 41, 34.
Royston, P 1995. Remark AS R94: a remark on algorithm AS 181: The W-test for normality. Journal of the Royal Statistical Society. Series C (Applied Statistics) 44, 547551.
Silva, SR 2016. Use of ultrasonographic examination for in vivo evaluation of body composition and for prediction of carcass quality of sheep. Small Ruminant Research 152, 144157.
Skinner, ME, Uzilov, AV, Stein, LD, Mungall, CJ and Holmes, IH 2009. JBrowse: a next-generation genome browser. Genome Research 19, 16301638.
Thye, T, Vannberg, FO, Wong, SH, Owusu-Dabo, E, Osei, I, Gyapong, J, Sirugo, G, Sisay-Joof, F, Enimil, A, Chinbuah, MA, Floyd, S, Warndorff, DK, Sichali, L, Malema, S, Crampin, AC, Ngwira, B, Teo, YY, Small, K, Rockett, K, Kwiatkowski, D, Fine, PE, Hill, PC, Newport, M, Lienhardt, C, Adegbola, RA, Corrah, T, Ziegler, A, Morris, AP, Meyer, CG, Horstmann, RD and Hill, AVS 2010. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nature genetics 42, 739741.
Verbeek, E, Kanis, E, Bett, RC and Kosgey, IS 2011. Optimisation of breeding schemes for litter size, lambing interval, body weight and parasite resistance for sheep in Kenya. Livestock Research for Rural Development 23, Article #187.
Walling, GA, Visscher, PM, Wilson, AD, McTeir, BL, Simm, G and Bishop, SC 2004. Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations. Journal of Animal Science 82, 22342245.
Zhang, L, Liu, J, Zhao, F, Ren, H, Xu, L, Lu, J, Zhang, S, Zhang, X, Wei, C, Lu, G, Zheng, Y and Du, L 2013. Genome-wide association studies for growth and meat production traits in sheep. PLoS One 8, e66569.


Type Description Title
Supplementary materials

Garza Hernandez et al supplementary material 1
Garza Hernandez et al supplementary material

 Word (17 KB)
17 KB

Analysis of single nucleotide polymorphisms variation associated with important economic and computed tomography measured traits in Texel sheep

  • D. Garza Hernandez (a1), S. Mucha (a1) (a2), G. Banos (a1) (a3), K. Kaseja (a1), K. Moore (a1), N. Lambe (a1), J. Yates (a4) and L. Bunger (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed