Skip to main content Accessibility help
×
Home

Adaptations of hepatic amino acid uptake and net utilisation contributes to nitrogen economy or waste in lambs fed nitrogen- or energy-deficient diets

  • G. Kraft (a1), I. Ortigues-Marty (a1), D. Durand (a1), D. Rémond (a2), T. Jardé (a1), B. Bequette (a3) and I. Savary-Auzeloux (a1)...

Abstract

We investigated the effect of relative changes in dietary nitrogen (N) and energy supply and the subsequent variations in net portal appearance (NPA) of nitrogenous and energy nutrients on the net amino acid (AA) uptake by the liver and net N supply to the peripheral tissues. Six lambs were catheterised across the splanchnic tissues and received, in a replicated Latin square, one of three dietary treatments. The diets were formulated to either match the requirements of N and energy (C), or supply only 0.8 of the N requirement (LN) or 0.8 of the energy requirement (LE). Net fluxes of AA and urea-N were measured across the portal-drained viscera, and estimation of arterial hepatic flow allowed the estimation of hepatic fluxes. Catheters were implanted into the portal and hepatic veins as well as in the abdominal aorta for the measurement of AA fluxes. Animals fed the LN diet showed more efficient N retention (0.59 of digested N) than did the C and LE diet (0.50 and 0.33, respectively; P < 0.001). The NPA of total AA-N for the LN diet was only 0.60 of the value measured for the control (C) diet (P < 0.01). Despite this, the total estimated AA-N net splanchnic fluxes were not significantly different across the three diets (3.3, 1.9 and 2.6 g total AA-N/day for C, LN and LE, respectively, P = 0.52). Thus, different metabolic regulations must have taken place across the liver between the three experimental diets. A combination of decreased net uptake of total AA-N by the liver of animals in the LN diet (0.61 of the C diet; P = 0.002) and reduced urinary urea-N production (0.52 of the C diet; P = 0.001) spared AA from catabolism in the LN diet relative to the other two diets. For the LE diet, the urinary urea-N output was 1.3 times the value of the C diet (P = 0.01). This may relate to an increased catabolism of AA by the muscle and/or, to a lesser extent, to an increased utilisation of AA for gluconeogenesis in the liver. These effects may explain the reduced whole body protein retention observed with the LE diet.

Copyright

Corresponding author

References

Hide All
Argiles, JM, Busquets, S, Lopez-Soriano, FJ 2001. Metabolic interrelationships between liver and skeletal muscle in pathological states. Life Science 69, 13451361.
Attaix, D, Rémond, D, Savary-Auzeloux, IC 2005. Protein metabolism and turnover. In Quantitative aspects of ruminant digestion and metabolism (ed. J Dijksta, JM Forbes and J France), pp. 373397. CABI Publishing, Wallingford, UK.
Bach, A, Huntington, GB, Calsamiglia, S, Stern, MD 2000. Nitrogen metabolism of early lactation cows fed diets with two different levels of protein and different amino acid profiles. Journal of Dairy Science 83, 25852595.
Barnes, RJ, Comline, RS, Dobson, A 1986. The control of splanchnic blood flow. In Control of digestion and metabolism in ruminants (ed. LP Milligan, WL Grovum and A Dobson), pp. 4159. Prentice Hall, Engelwood Cliffs, NJ, USA.
Black, JL, Griffiths, DA 1975. Effects of live weight and energy intake on nitrogen balance and total N requirements of lambs. British Journal of Nutrition 33, 399413.
Blouin, JP, Bernier, JF, Reynolds, CK, Lobley, GE, Dubreuil, P, Lapierre, H 2002. Effect of supply of metabolizable protein on splanchnic fluxes of nutrients and hormones in lactating dairy cows. Journal of Dairy Science 85, 26182630.
Bruckental, I, Huntington, GB, Baer, CK, Erdman, RA 1997. The effect of abomasal infusion of casein and recombinant somatotropin hormone injection on nitrogen balance and amino acid fluxes in portal-drained viscera and net hepatic and total splanchnic blood in Holstein steers. Journal of Animal Science 75, 11191129.
Burrin, DG, Ferrell, CL, Eisemann, JH, Britton, RA 1991. Level of nutrition and splanchnic metabolite flux in young lambs. Journal of Animal Science 69, 10821091.
Calder, AG, Smith, A 1988. Stable isotope ratio analysis of leucine and ketoisocaproic acid in blood plasma by gas chromatography/mass spectrometry. Use of tertiary butyldimethylsilyl derivatives. Rapid Communication in Mass Spectrometry 2, 1416.
Calder, AG, Garden, KE, Anderson, SE, Lobley, GE 1999. Quantitation of blood and plasma amino acids using isotope dilution electron impact gas chromatography/mass spectrometry with U-(13)C amino acids as internal standards. Rapid Communication in Mass Spectrometry 13, 20802083.
Castillo, AR, Kebreab, E, Beever, DE, Barbi, JH, Sutton, JD, Kirby, HC, France, J 2001. The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. Journal of Animal Science 79, 247253.
Chowdhury, SA, Orskov, ER 1997. Protein energy relationships with particular references to energy undernutrition: a review. Small Ruminant Research 26, 17.
Connell, A, Calder, AG, Anderson, SE, Lobley, GE 1997. Hepatic protein synthesis in the sheep: effect of intake as monitored by use of stable-isotope-labelled glycine, leucine and phenylalanine. British Journal of Nutrition 77, 255271.
El-Kadi, SW, Baldwin, RL, Sunny, NE, Owens, SL, Bequette, BJ 2006. Intestinal protein supply alters amino acid, but not glucose, metabolism by the sheep gastrointestinal tract. Journal of Nutrition 136, 12611269.
Ferrell, CL, Kreikemeier, KK, Freetly, HC 1999. The effect of supplemental energy, nitrogen, and protein on feed intake, digestibility, and nitrogen flux across the gut and liver in sheep fed low-quality forage. Journal of Animal Science 77, 33533364.
Ferrell, CL, Freetly, HC, Goetsch, AL, Kreikemeier, KK 2001. The effect of dietary nitrogen and protein on feed intake, nutrient digestibility, and nitrogen flux across the portal-drained viscera and liver of sheep consuming high-concentrate diets ad libitum. Journal of Animal Science 79, 13221328.
Hanigan, MD 2005. Quantitative aspects of ruminant splanchnic metabolism as related to predicting animal performance. Animal Science 80, 2332.
Harris, PM, Skene, PA, Buchan, V, Milne, E, Calder, AG, Anderson, SE, Connell, A, Lobley, GE 1992. Effet of food intake on hind-limb and whole body protein metabolism in young growing sheep: chronic studies based on arterio-venous techniques. British Journal of Nutrition 68, 389407.
Heger, J, Patras, P, Nitrayova, S, Dolesova, P, Sommer, A 2007. Histidine maintenance requirement and efficiency of its utilization in young pigs. Archives of Animal Nutrition 61, 179188.
Huntington, GB 1982. Portal blood flow and net absorption of ammonia-nitrogen, urea-nitrogen, and glucose in nonlactating Holstein cows. Journal of Dairy Science 65, 11551162.
Jarrige, R 1989. Ruminant nutrition: recommended allowances and feed tables. Institut National de la Recherche Agronomique, Paris, France.
Krehbiel, CR, Ferrell, CL 1999. Effects of increasing ruminally degraded nitrogen and abomasal casein infusion on net portal flux of nutrients in yearling heifers consuming a high-grain diet. Journal of Animal Science 77, 12951305.
Lapierre, H, Vernet, J, Martineau, R, Sauvant, D, Nozière, P, Ortigues-Marty, I 2007. Portal absorption of N: partition between amino acids and ammonia in relation with nitrogen intake in ruminants. In Energy and protein metabolism and nutrition (ed. I Ortigues-Marty), EAAP Publication no. 124, pp. 579580. Wageningen Academic Publishers, Wageningen, The Netherlands.
Lapierre, H, Bernier, JF, Dubreuil, P, Reynolds, CK, Farmer, C, Ouellet, DR, Lobley, GE 2000. The effect of feed intake level on splanchnic metabolism in growing beef steers. Journal of Animal Science 78, 10841099.
Lobley, GE 1994. Amino acid and protein metabolism in the whole body and individual tissues of ruminants. In Principles of protein nutrition of ruminants (ed. JM Asplund), pp. 147178. CRC Press, London, UK.
Lobley, GE 2003. Protein turnover – what does it mean for animal production? Canadian Journal of Animal Science 83, 327340.
Lobley, GE 2007. Protein-energy interaction: horizontal aspects. In Energy and protein metabolism and nutrition (ed. I Ortigues-Marty), EAAP Publication no. 124, pp. 445461. Wageningen Academic Publishers, Wageningen, The Netherlands.
Lobley, GE, Milano, GD 1997. Regulation of hepatic nitrogen metabolism in ruminants. Proceedings of the Nutrition Society 56, 547563.
Lobley, GE, Lapierre, H 2003. Post-absorptive metabolism of amino acids. In Progress in research on energy and protein metabolism (ed. WB Souffrant and CC Metges), EAAP Publication no. 109, pp. 737756. Wageningen Academic Publishers, Wageningen, The Netherlands.
Lobley, GE, Connell, A, Revell, DK, Bequette, BJ, Brown, DS, Calder, AG 1996. Splanchnic-bed transfers of amino acids in sheep blood and plasma, as monitored through use of a multiple U-13C-labelled amino acid mixture. British Journal of Nutrition 75, 217235.
Lobley, GE, Connell, A, Lomax, MA, Brown, DS, Milne, E, Calder, AG, Farningham, DA 1995. Hepatic detoxification of ammonia in the ovine liver: possible consequences for amino acid catabolism. British Journal of Nutrition 73, 667685.
Lobley, GE, Shen, X, Le, G, Bremner, DM, Milne, E, Calder, AG, Anderson, SE, Dennison, N 2003. Oxidation of essential amino acids by the ovine gastrointestinal tract. British Journal of Nutrition 89, 617630.
MacRae, JC, Bruce, LA, Brown, DS, Farningham, DA, Franklin, M 1997. Absorption of amino acids from the intestine and their net flux across the mesenteric- and portal-drained viscera of lambs. Journal of Animal Science 75, 33073314.
Maxwell, JL, Terracio, L, Borg, TK, Baynes, JW, Thorpe, SR 1990. A fluorescent residualizing label for studies on protein uptake and catabolism in vivo and in vitro. Biochemical Journal 267, 155162.
Metcalf, JA, Beever, DE, Sutton, JD, Wray-Cahen, D, Evans, RT, Humphries, DJ, Backwell, FR, Bequette, BJ, MacRae, JC 1994. The effect of supplementary protein on in vivo metabolism of the mammary gland in lactating dairy cows. Journal of Dairy Science 77, 18161827.
Milano, GD 1997. Liver N transactions in sheep (Ovis aries). PhD thesis, University of Aberdeen.
Milano, GD, Hotston-Moore, A, Lobley, GE 2000. Influence of hepatic ammonia removal on ureagenesis, amino acid utilization and energy metabolism in the ovine liver. British Journal of Nutrition 83, 307315.
Oldham, JD 1984. Protein–energy interrelationships in dairy cows. Journal of Dairy Science 67, 10901114.
Ormsby, AA 1942. A direct colorimetric method for the determination of urea in blood and urine. Journal of Biological Chemistry 146, 595604.
Ortigues-Marty, I, Doreau, M 1995. Responses of the splanchnic tissues of ruminants to changes in intake: absorption of digestion end products, tissue mass, metabolic activity and implications to whole animal energy metabolism. Annales de Zootechnie 44, 321346.
Ortigues-Marty, I, Durand, D, Lefaivre, J 1994. Use of para-amino hippuric acid to measure blood flows through portal-drained-viscera, liver and hindquarters in sheep. Journal of Agricultural Science 122, 299308.
Raggio, G, Lemosquet, S, Lobley, GE, Rulquin, H, Lapierre, H 2006. Effect of casein and propionate supply on mammary protein metabolism in lactating dairy cows. Journal of Dairy Science 89, 43404351.
Raggio, G, Pacheco, D, Berthiaume, R, Lobley, GE, Pellerin, D, Allard, G, Dubreuil, P, Lapierre, H 2004. Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows. Journal of Dairy Science 87, 34613472.
Reynolds, CK 1992. Metabolism of nitrogenous compounds by ruminant liver. Journal of Nutrition 122, 850854.
Reynolds, CK 2006. Splanchnic amino acid metabolisms in ruminants. In Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress (ed. K Sejrsen, T Hvelplund and MO Nielsen), pp. 225248. Wageningen Academic Publisher, Wageningen, The Netherlands.
Rigout, S, Hurtaud, C, Lemosquet, S, Bach, A, Rulquin, H 2003. Lactational effect of propionic acid and duodenal glucose in cows. Journal of Dairy Science 86, 243253.
Ruot, B 2001. Synthèse des protéines de la réaction inflammatoire en réponse à l’infection. Déterminisme de l’hypoalbuminémie. PhD thesis, Université d’Auvergne, Clermont-Ferrand, France.
Savary-Auzeloux, I, Kraft, G, Ortigues-Marty, I 2007. Can liver protein synthesis be affected by an imbalanced dietary supply of energy or nitrogen in growing lambs? In Energy and protein metabolism and nutrition (ed. I Ortigues-Marty), EAAP Publication no. 124, pp. 351352. Wageningen Academic Publishers, Wageningen, The Netherlands.
Savary-Auzeloux, I, Majdoub, L, LeFloc’h, N, Ortigues-Marty, I 2003. Effects of intraruminal propionate supplementation on nitrogen utilization by the portal-drained viscera, the liver and the hindlimb in lambs fed frozen rye grass. British Journal of Nutrition 90, 939952.
Savary-Auzeloux, I, Durand, D, Gruffat, D, Bauchard, D, Ortigues-Marty, I 2008a. Food restriction and refeeding in lambs influence muscle antioxidant status. Animal 2, 738745.
Savary-Auzeloux, I, Kraft, G, Dardevet, D, Rémond, D, Loncke, C, Ortigues-Marty, I 2008b. Liver protein synthesis regulation by energetic and nitrogenous nutrient supply. Conference of the 7th International Symposium on Amino acid/Protein Metabolism in Health and Disease. Mechanisms and Pathways controlling Protein Expression and Turnover, 4–5 July 2008, Padova, Italy.
Savary-Auzeloux, I, Kraft, G, Bequette, BJ, Papet, I, Rémond, D, Ortigues-Marty, I 2010. Dietary nitrogen-to-energy ratio alters amino acid partition in the whole body and among the splanchnic tissues of growing rams. Journal of Animal Science 88, 21222131.
Storm, E, Orskov, ER 1983. The nutritive value of rumen micro-organisms in ruminants. 1. Large-scale isolation and chemical composition of rumen micro-organisms. British Journal of Nutrition 50, 463470.
Vernet, J, Nozière, P, Sauvant, D, Leger, S, Ortigues-Marty, I 2005. Regulation of hepatic blood flow by feeding conditions in sheep: a meta-analysis. In Advanced nutrition and feeding strategies to improve sheep and goat production (ed. A Mougou and B Hervieu), Options Méditerranéennes no. 74, pp. 435440. IAM, Paris, France.
Volpi, E, Lucidi, P, Cruciani, G, Monacchia, F, Reboldi, G, Brunetti, P, Bolli, GB, De Feo, P 1996. Contribution of amino acids and insulin to protein anabolism during meal absorption. Diabetes 45, 12451252.
Wolff, JE, Bergman, EN 1972. Gluconeogenesis from plasma amino acids in fed sheep. American Journal of Physiology 223, 455460.

Keywords

Related content

Powered by UNSILO

Adaptations of hepatic amino acid uptake and net utilisation contributes to nitrogen economy or waste in lambs fed nitrogen- or energy-deficient diets

  • G. Kraft (a1), I. Ortigues-Marty (a1), D. Durand (a1), D. Rémond (a2), T. Jardé (a1), B. Bequette (a3) and I. Savary-Auzeloux (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.