Skip to main content Accessibility help
×
Home

Cropping systems: Effects on soil quality indicators and yield of pearl millet in an arid region

  • Praveen-Kumar (a1), R.K. Aggarwal (a2) and James F. Power (a3)

Abstract

While crop rotations improve soil quality indicators and crop yields in humid temperate regions, much less information is available under harsher arid tropical and subtropical conditions. A field experiment conducted from 1990 to 1993 compared the effect of continuous pearl millet and pearl millet-fallow systems with six rotations of pearl millet that included one, two, or three years of a legume (cluster bean or mung bean). Data were collected on several soil quality indicators and pearl millet yield. Continuous pearl millet monoculture for three y ears did not affect soil organic C, NaHCO3-soluble P, DTPA extractable Fe, Cu, Mn, or Zn, or several soil organic N fractions, but slightly increased activity of dehydrogenase and acid and alkaline phosphatase enzymes. Similar trends were observed for fallow-based cropping systems, except that enzyme activities were lower. Cropping systems containing mung bean or cluster bean improved availability of soil N and other nutrients and increased enzyme activity. These effects increased with number of years of legume. Improvements from cluster bean generally were greater than from mung bean. The lowest pearl milkt yield was obtained with continuous pearl millet and no N, and yields f or fallow-based cropping systems were 13% greater than with continuous pearl millet. Grain yields of pearl millet with two or three years of mung bean in the cropping system were, respectively, 37 and 65% greater than for continuous pearl millet; with cluster bean the corresponding increases were 68 and 101%. Pearl millet yield increased with N applications up to 40 kg/ha under all cropping systems, and up to 60 kg/ha for some cluster bean-based systems. Yield of pearl millet following cluster bean was nearly double that of continuous pearl millet. These results indicate that in hot, dry climates cropping systems that include a legume, especially cluster bean, are more productive, use the limited water supply and fertilizer N more effectively, and improve several soil quality indicators more than do cropping systems without legumes.

Copyright

References

Hide All
1.Aggarwal, R.K., and Praveen-Kumar, . 1995. Integrated nutrient management in drylands. In Singh, R.P. (ed). Sustainable Development of Dryland Agriculture in India. Scientific Publishers, Jodhpur, India, pp. 139156.
2.Aggarwal, R.K., Praveen-Kumar, , and Power, J.F.. In press. Crop residue and manure impacts on pearl millet yields and soil fertility in an arid tropical region. Soil Tillage Research.
3.Alexander, M., and Clark, F.E.. 1965. Nitrifying bacteria. In Black, C.A. (ed). Methods of Soil Analysis. Part 2. Agronomy Monographs No. 9. Amer. Soc. Agronomy, Madison, Wisconsin, pp. 14771483.
4.Brawand, H., and Hossner, L.R.. 1976. Nutrient content of sorghum leaves and grain as influenced by long term crop rotation and fertilizer treatment. Agronomy J. 68:277280.
5.Bremner, J.M. 1965a. Total nitrogen. In Black, C.A. (ed). Methods of Soil Analysis. Part 2. Agronomy Monographs No. 9. Amer. Soc. Agronomy, Madison, Wisconsin, pp. 11491176.
6.Bremner, J.M. 1965b. Inorganic forms of nitrogen. In Black, C.A. (ed). Methods of Soil Analysis. Part 2. Agronomy Monographs No. 9. Amer. Soc. Agronomy, Madison, Wisconsin, pp. 11791235.
7.Chae, Y.M. 1993. Organic forms of nitrogen. In Carter, M.R. (ed). Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, Florida, pp. 377389.
8.Classen, N.M., and Kissel, D.E.. 1984. Rotation with soybeans increases corn and grain sorghum yields. Better Crops Plant Food 68:2830.
9.Clegg, M.D. 1982. Effect of soybean on yield and nitrogen response of subsequent sorghum crops in Eastern Nebraska. Field Crops Research 5:233239.
10.Domasch, K.H., Jagnow, G., and Anderson, T.H.. 1983. An ecological concept for assessment of side effects of agrochemicals on soil microorganisms. Residue Reviews 86:65105.
11.Doran, J.W., and Smith, M.S.. 1987. Organic matter management and utilization of soil and fertilizer nutrients. In Follett, R.F., Stewart, J.W.B., and Cole, C.V. (eds). Soil Fertility and Organic Matter as Critical Components of Production Systems. Special Pub. 19. Soil Sci. Soc. Amer., Madison, Wisconsin, pp. 5372.
12.Jackson, M.L. 1967. Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi, India.
13.Klein, D.A., Sorensen, D.L., and Redente, E.F.. 1985. Soil enzymes: A predictor of reclamation potential and progress. In Tate, R.L. and Klein, D.A. (eds). Soil Reclamation Process: Microbiological Analyses and Applications. Marcel Deckker Inc., New York, N.Y. pp. 141171.
14.Lindsay, W.L., and Norvell, W.A.. 1978. Development of DTPA sou test for zinc, iron, manganese and copper. Soil Sci. Soc. Amer. J. 42:421428.
15.Mann, H.S., and Singh, R.P.. 1977. Crop production in Indian arid zone. In Desertification and Its Control. Indian Council of Agric. Res., New Delhi, India, pp. 215234.
16.Nnadi, L.A., and Balasubramanian, V.. 1978. Root nitrogen content and transformation in selected grain legumes. Tropical Agric. (Trinidad) 55:2332.
17.Nye, P.H., and Tinker, P.B.. 1977. Solute Movement in Soil Root System. Blackwell Scientific Publishers, Oxford, England, pp. 127186.
18.Odell, R.T., Walker, W.M., Boone, L.V., and Oldham, M.G.. 1982. The Morrow Plots: A Century of Learning. Bulletin 775. Agric. Exp. Sta., Univ. of Illinois, Urbana, Illinois.
19.Olson, S.R., and Dean, L.A.. 1965. Phosphorus. In Black, C.A. (ed). Methods of Soil Analysis. Part 2. Agronomy Monographs No. 9. Amer. Soc. Agronomy, Madison, Wisconsin. pp. 10351049.
20.Oswal, M.C., Bakshi, R.K., Kumar, V., and Kumar, S.. 1989. Response of dryland pearl millet to fertilizer under two cropping sequences. J. Indian Soc. Soil Sci. 37:337342.
21.Papendick, R.I., and Parr, J.F.. 1992. Soil quality—the key to a sustainable agriculture. Amer. J. Alternative Agric. 7:23.
22.Parsons, J.W., and Tinsley, J.. 1975. Nitrogenous substances. In Gieseking, I.E. (ed). Soil Components. Vol. 1. Springer-Verlag, New York, N.Y. pp. 263304.
23.Rego, T.J. 1992. Long term effects of cropping system rotations on total soil nitrogen and organic carbon and their relevance to sustainability in vertisols. Annual Report. ICRISAT, Hyderabad, India, pp. 4546.
24.Rego, T.J. 1993. Long term effects of cropping system rotations on crop productivity and soil fertility in the assured rainfall areas. Annual Report. ICRISAT, Hyderabad, India, pp. 5152.
25.Saxena, A., Singh, D.V., and Joshi, N.L.. 1995. Allelopathic effects on pearl millet in arid regions. National Symposium on Agriculture and Environment. Abstracts. National Inst. of Ecology, New Delhi, India, pp. 2325.
26.Saxena, A., Singh, D.V., and Joshi, N.L.. 1996. Autotoxic effect of pearl millet aqueous extracts on seed germination and seedling growth. J. Arid Environment 33:255260.
27.Singh, R.P. 1980. Cropping systems for drylands of Indian arid zone. Annals of Arid Zone 19:443447.
28.Singh, S.D., Bhandari, R.C., and Aggarwal, R.K.. 1985. Long term effects of phosphate fertilizers on soil fertility and yield of pearl millet grown in rotation with grain legume. Indian J. Agric. Sci. 55:274278.
29.Snedecor, G.W., and Cochran, W.G.. 1967. Statistical Methods. Oxford and IBH Pub. Co., Calcutta, India.
30.Tabatabai, M.A. 1982. Soil enzymes. In Black, C.A. (ed.) Methods of Soil Analysis. Part 2. Agronomy Monographs No. 9. Amer. Soc. Agronomy, Madison, Wisconsin, pp. 903947.
31.Tabatabai, M.A., and Bremner, J.M.. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1:301307.
32.Visser, S., and Parkinson, D.. 1992. Soil biological criteria as indicator of soil quality: Soil microorganisms. Amer. J. Alternative Agric. 7:3337.
33.Vyas, N.D., and Desai, J.R.. 1953. Effect of different doses of superphosphate on the fixation of atmospheric nitrogen through pea. J. Indian Soc. Soil Sci. 1:3240.

Keywords

Cropping systems: Effects on soil quality indicators and yield of pearl millet in an arid region

  • Praveen-Kumar (a1), R.K. Aggarwal (a2) and James F. Power (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed