Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-27T04:12:21.210Z Has data issue: false hasContentIssue false

Stable Isotope Analysis of Turkey (Meleagriscc Gallopavo) Diet from Pueblo II and Pueblo III Sites, Middle San Juan Region, Northwest New Mexico

Published online by Cambridge University Press:  20 January 2017

Harlan McCaffery
Affiliation:
Department of Anthropology & Applied Archaeology, Station 53, Eastern New Mexico University, 1500 South Avenue K, Portales, NM, 88130 (Harley.mc@gmail.com)
Robert H. Tykot
Affiliation:
Department of Anthropology, SOC 108, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620-7200
Kathy Durand Gore
Affiliation:
Department of Anthropology & Applied Archaeology, Station 53, Eastern New Mexico University, 1500 South Avenue K, Portales, NM, 88130 (Harley.mc@gmail.com)
Beau R. DeBoer
Affiliation:
Department of Anthropology & Applied Archaeology, Station 53, Eastern New Mexico University, 1500 South Avenue K, Portales, NM, 88130 (Harley.mc@gmail.com)

Abstract

The transition from the Pueblo 11 Period (A.D. 1050–1150) to the Pueblo III Period (A.D. 1150–1300) in the San Juan Basin marks an intensification of turkey use, evidenced by an increase in the percentage of faunal assemblages representing turkey bones. We examine stable carbon (δ13C) and nitrogen ( δ15N) isotopic values of turkey bones from three ancestral Puebloan sites in the Middle San Juan Region to test the hypothesis that this intensification is linked to an increase in the amount of maize in the turkeys’ diets. We find no significant change in δ13C or δ15N across the two time periods, and all of the specimens’ values indicate maize consumption. A plot of bone apatite δ13C against collagen δ13C is consistent with a model of diets high in C4 protein, indicating that the turkeys did not use an alternative source of protein to maize and/or fauna that fed on maize. The reliance of both humans and turkeys on maize indicates a degree of turkey-human interdependency not previously known in the Middle San Juan Region. Future inquiries into the paleodiet of turkeys should target times and places where there is likely to have been a transition from hunting to domestication.

Resumen

Resumen

La transición del período Pueblo II (1050–1150 d.C.) al Pueblo III (1150–1300 d.C.) en la Cuenca de San Juan marca la intensificación del uso de pavos, evidencia de lo cual es el aumento del porcentaje de huesos de pavos representados en la agrupación de la fauna. En este estudio, se examinan los valores isotópicos estables de carbón (δ13C) y nitrógeno (δ15N) de los huesos de pavos en tres localidades de los Pueblos ancestrales en la región Media de San Juan para probar la hipótesis de que esta intensificación está relacionada a un incremento en la cantidad de maíz en las dietas de los pavos. No encontramos un cambio significativo en δ13C ó δ15N entre los dos períodos de tiempo, y todos los valores de los especímenes señalan el consumo de maíz. La gráfica del apatito óseo δ13 C en contraste con el colágeno δ13 C es consistente con el modelo de dietas altas en proteína C4, lo cual señala que los pavos no utilizaban una fuente de proteína fuera del maíz y/o la fauna que se alimentaba de maíz. La dependencia de ambos, humanos y pavos, al maíz indica un grado no previamente conocido de interdependencia pavo-humano en la región Media de San Juan. Futuras investigaciones sobre la paleodieta de los pavos deben enfocarse en los tiempos y lugares donde es posible que haya ocurrido la transición de la cacería a la domesticación.

Type
Articles
Copyright
Copyright © The Society for American Archaeology 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Akins, Nancy 1987 Faunal Remains from Pueblo Alto: Artifactual and Biological Analyses. In Investigations of the Pueblo Alto Complex, Chaco Canyon, New Mexico, Vol. Ill, Part 2, edited by Frances Joan Mathien and Thomas C. Windes, pp.445460. National Park Service, U.S. Department of the Interior, Santa Fe, New Mexico. Google Scholar
Ambrose, Stanley H. 1990 Preparation and Characterization of Bone and Tooth Collagen for Archaeological Analysis. Journal of Archaeological Science 17:431451.Google Scholar
Ambrose, Stanley H. 1991 Effects of Diet, Climate, and Physiology on Nitrogen Isotope Abundances in Terrestrial Food Webs. Journal of Archaeological Science 18:293317.Google Scholar
Ambrose, Stanley H., and Norr, Lynette 1993 Experimental Evidence For the Relationship of the Carbon Isotopes Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate. In Prehistoric Human Bone: Archaeology at the Molecular Level, edited by Joseph B. Lambert and Gisela Grupe, pp. 137. Springer-Verlag, New York. CrossRefGoogle Scholar
Badenhorst, Shaw 2008 The Zooarchaeology of Great House Sites in the San Juan Basin of the American Southwest. Ph.D. Dissertation, Department of Archaeology, Simon Fraser University, Vancouver, British Columbia.Google Scholar
Badenhorst, Shaw, and Driver, Johnathan C. 2009 Faunal Changes in Fanning Communities from Basketmaker II to Pueblo III (A.D. 1–1300) in the San Juan Basin of the American Southwest. Journal of Archaeological Science 36:18321841.Google Scholar
Beacham, E. Bradley, and Durand, Stephen R. 2007 Eggshell and the Archaeological Record: New Insights into Turkey Husbandry in the American Southwest. Journal of Archaeological Science 34:16101621.Google Scholar
Bocinsky, Ronald Kyle 2011 Is a Bird in the Hand Really Worth Two in the Bush? Models of Turkey Domestication on the Colorado Plateau. Unpublished Master's thesis, Department of Anthropology, Washington State University, Pullman, Washington.Google Scholar
Breitburg, Emanuel 1988 Prehistoric New World Turkey Domestication: Origins, Developments and Consequences. Ph.D. Dissertation, Department of Anthropology, Southern Illinois University, Carbondale, Illinois. Google Scholar
Clementz, M. T., Fox Dobbs, K., Wheatley, P. V., Koch, P. L., and Doak, D. F. 2009 Revisiting Old Bones: Coupled Carbon Isotope Analysis of Bioapatite and Collagen as an Ecological and Paleoecological Tool. Geological Journal 44:605620.Google Scholar
Coltrain, Joan Brenner, Janetski, Joel C., and Carlyle, Shawn W. 2007 The Stable and Radio-Isotope Chemistry of Western Basketmaker Burials: Implications for Early Puebloan Diets and Origins. American Antiquity 72:301321.CrossRefGoogle Scholar
Coltrain, Joan Brenner, and Leavitt, Steven W. 2002 Climate and Diet in Fremont Prehistory: Economic Variability and Abandonment of Maize Agriculture in the Great Salt Lake Basin. American Antiquity 67:453485.Google Scholar
Cordell, Linda S. 1997 Archaeology of the Southwest. Academic Press, San Diego, California.Google Scholar
DeBoer, Beau 2007 Ancestral Puebloan Dietary Reconstruction from the Middle San Juan Region Through Stable Isotope Analysis. Unpublished Master’s thesis, Department of Anthropology and Applied Archaeology, Eastern New Mexico University, Portales.Google Scholar
DeNiro, Michael J., and Epstein, Samuel 1978 Influence of Diet on the Distribution of Carbon Isotopes in Animals. Geochimica et Cosmochimica Acta 42:495506.Google Scholar
DeNiro, Michael J., and Epstein, Samuel 1981 Influence of Diet on the Distribution of Nitrogen Isotopes in Animals. Geochimica et Cosmochimica Acta 45:341351.CrossRefGoogle Scholar
Drennan, Robert D. 2009 Statistics for Archaeologists: A Commonsense Approach. Springer, New York.Google Scholar
Driver, J. C. 2002 Faunal Variation and Change in the Northern San Juan Region. In Seeking the Center Place: Archaeology and Ancient Communities in the Mesa Verde Region, edited by Mark D. Varien and Richard H. Wilshusen, pp. 143160. University of Utah Press, Salt Lake City. Google Scholar
Enright, Erin 2008 Faunal Analysis of the Tommy Site: Faunal Utilization in the Chacoan Southwest. Unpublished Master’s thesis, Department of Anthropology and Applied Archaeology, Eastern New Mexico University, Portales, New Mexico. Google Scholar
Gnabasik, Virginia R. 1981 Faunal Utilization by the Pueblo Indians. Unpublished Master’s thesis, Department of Anthropology and Applied Archaeology, Eastern New Mexico University, Portales.Google Scholar
Grayson, Donald K. 1984 Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas. Academic Press, Orlando, Florida.Google Scholar
Hard, Robert J., and Anne Katzenberg, M. 2011 Stable Isotope Study of Hunter-Gatherer-Fisher Diet, Mobility, and Intensification on the Texas Gulf Coastal Plain. American Antiquity 76:709751.Google Scholar
Hayes, Alden C. 1964 The Archaeological Survey of Weather ill Mesa, Archaeological Research Series 7A. National Park Service, Washington, D.C. Google Scholar
Hobson, Keith A., and Clark, Robert G. 1992a Assessing Avian Diets Using Stable Isotopes II: Factors Influencing Diet-Tissue Fractionation. The Condor 94:189197.Google Scholar
Hobson, Keith A., and Clark, Robert G. 1992b Assessing Avian Diets Using Stable Isotopes I: Turnover of l3C in Tissues. The Condor 94:181188.CrossRefGoogle Scholar
Hogan, Patrick, and Sebastian, Lynne 1991 Archaeology of the San Juan Breaks: The Anasazi Occupation, edited by Patrick Hogan and Lynne Sebastian, prepared for the Bureau of Land Management Farmington Resource Area, New Mexico.Google Scholar
Howland, M. R., Corr, L. T., Young, S. M., Jones, V., Jim, S., van der Merwe, N. J., Mitchell, A. D., and Evershed, R. 2003 Expression of the Dietary Isotope Signal in the Compound-Specific δ13C Values of Pig Bone Lipids and Amino Acids. International Journal of Osteoarchaeology 13:5465.Google Scholar
Huckleberry, Gary A., and Billman, Brian R. 1998 Floodwater Farming, Discontinuous Ephemeral Streams, and Puebloan Abandonment in Southwestern Colorado. American Antiquity 63:595616.Google Scholar
Hwang, Y. T., Millar, J. S., and Longstaffe, F. J. 2007 Do the δ15N and δ13C Values of Feces Reflect the Isotopic Composition of Diets in Small Mammals? Canadian Journal of Zoology 85:388396.Google Scholar
Irwin-Williams, Cynthia 2006 [1980] Salmon Introduction: Purpose and Significance of the San Juan Archaeological Program. In Thirty-Five Years of Archaeological Research at Salmon Ruins, New Mexico, edited by Paul F. Reed, pp. 1639. Center for Desert Archaeology, Tuscon, Arizona. Google Scholar
Jim, S., Jones, V., Ambrose, S. H., and Evershed, R. P. 2006 Quantifying Dietary Macronutrient Sources of Carbon for Bone Collagen Biosynthesis Using Natural Abundance Stable Carbon Isotope Analysis. British Journal of Nutrition 95:10551062.CrossRefGoogle Scholar
Jones, Terry L., Brown, Gary M., Mark Raab, L., McVickar, Janet L., Geoffrey Spaulding, W., Kennett, Douglas J., York, Andrew, and Walker, Phillip L. 1999 Environmental Imperatives Reconsidered: Demographic Crises in Western North America During the Medieval Climatic Anomaly. Current Anthropology 40:137170.Google Scholar
Katzenberg, M. Anne 2008 Stable Isotope Analysis: A Tool for Studying Past Diet, Demography, and Life History. In Biological An thropology of the Human Skeleton, edited by Anne M. Katzenberg and Shelley R. Sanders, pp. 413441. John Willey and Sons, Hoboken, New Jersey. Google Scholar
Kellner, Corina M., and Schoeninger, Margaret J. 2007 A Simple Carbon Isotope Model for Reconstructing Human Diet. American Journal of Physical Anthropology 133:11121127.Google Scholar
Koch, P. L., Tuross, N., and Fogel, M. L. 1997 The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydrox-yapatite. Journal of Archaeological Science 24:417129.Google Scholar
Krueger, Harold W., and Sullivan, Charles H. 1984 Models for Carbon Isotope Fractionation Between Diet and Bone. In Stable Isotopes and Nutrition, edited by Judith R. Turnlund and Phyllis E. Johnson, pp. 205222. ACS Symposium Series 258. American Chemical Society, Washington, D.C. Google Scholar
Kuckelman, Kristin A., Lightfoot, Ricky R., and Martin, Debra L. 2000 Changing Patterns of Violence in the Northern San Juan Region. Kiva 66:147165.CrossRefGoogle Scholar
Lee-Thorp, Julia A., Sealy, Judith C., and van der Merwe, Nikolaas J. 1989 Stable Carbon Isotope Ratio Differences between Bone Collagen and Bone Apatite, and their Relationship to Diet. Journal of Archaeological Science 16:585599.Google Scholar
Lekson, Stephen H. 2002 War in the Southwest, War in the World. American Antiquity 67:607624.Google Scholar
McKusick, Charmion R. 1986 Southwest Indian Turkeys: Prehistory and Comparative Osteology. Southwest Bird Laboratory, Globe, Arizona.Google Scholar
Martin, Steve L. 1999 Virgin Anasazi Diet as Demonstrated Through the Analysis of Stable Carbon and Nitrogen Isotopes. Kiva 65:495514.Google Scholar
Martin, Debra L., Akins, Nancy J., Goodman, Alan H., Wolcott Toll, H., and Swedlund, Alan C. 2001 Harmony and Discord: Bioarchaeology of the La Plata Valley. Museum of New Mexico Office of Archae ological Studies, Santa Fe.Google Scholar
Munro, Natalie D. 1994 An Investigation of Anasazi Turkey Production in Southwestern Colorado. Unpublished Master’s thesis, Simon Fraser University, Burnbay, British Columbia. Google Scholar
Nott, BreAnne M. 2010 Documenting Domestication: Molecular and Palynological Analysis of Ancient Turkey Coprolites from the American Southwest. Unpublished Master’s thesis, Washington State University, Pullman, Washington.Google Scholar
Osborne, Colin P., and Beerling, David J. 2006 Nature’s Green Revolution: The Remarkable Evolutionary Rise of C4 Plants. Philosophical Transactions of the Royal Society 361:173194.CrossRefGoogle Scholar
Parsons, Elsie Clews 1939 Pueblo Indian Religion, University of Chicago Press, Chicago.Google Scholar
Passey, Benjamin H., Robinson, Todd F., Ayliffe, Linda K., Cerling, Thure E., Sponheimer, Matt, Denise Dearling, M., Roeder, Beverly L., and Eleringer, James R. 2005 Carbon Isotope Fractionation Between Diet, Breath CO2, and Bioapatite in Different Mammals. Journal of Archaeological Science 32:14591470.Google Scholar
Pechenkina, Ekaterina A., Ambrose, Stanley H., Xiaolin, Ma, and Benfer, Robert A. Jr. 2005 Reconstructing Northern Chinese Neolithic Subsistence Practices by Isotopic Analysis. Journal of Archaeological Science 32:11761189.Google Scholar
Rawlings, Tiffany A., and Driver, Johnathan C. 2010 Paleodiet of Domestic Turkey, Shields Pueblo (5MT3807), Colorado: Isotopic Analysis and its Implications for Care of a Household Domesticate. Journal of Archaeological Science 37:24332441.Google Scholar
Reed, Paul F. (editor) 2006 Thirty-Five Years of Archaeological Research at Salmon Ruins, New Mexico. 3 Vols. Center for Desert Archaeology, Tuscon, Arizona.Google Scholar
Reed, Paul F. (editor) 2008 Chaco’s Northern Prodigies: Salmon, Aztec, and the Ascendancy of the Middle San Juan Region after AD 1100. University of Utah Press, Salt Lake City.Google Scholar
Reitz, Elizabeth J., and Wing, Elizabeth S. 1999 Zooarchaeology. Cambridge University Press, Cambridge.Google Scholar
Schoeninger, Margaret J., and DeNiro, Michael J. 1984 Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Mammals. Geochimica er Cosmochimica Acta 48:625639.Google Scholar
Schorger, A. W. 1966 The Wild Turkey: Its History and Domestication. University of Oklahoma Press, Norman.Google Scholar
Speller, Camilla F., Kemp, Brian M., Wyatt, Scott D., Monroe, Cara, Lipe, William D., Arndt, Ursula M., and Yang, Dongya Y. 2010 Ancient Mitochondrial DNA Analysis Reveals Complexity of Indigenous North American Turkey Domestication. Proceedings of the National Academy of Sciences 107:28072812.Google Scholar
Spicer, Robert L. 1959 Wild Turkey in New Mexico: An Evaluation of Habitat. Bulletin 10. New Mexico Department of Game and Fish, Santa Fe.Google Scholar
Spielmann, Katherine A., Schoeninger, Margaret J., and Moore, Katherine 1990 Plains-Pueblo Interdependence and Human Diet at Pecos Pueblo, New Mexico. American Antiquity 55:745765.CrossRefGoogle Scholar
Steele, K. W., and Daniel, R. M. 1978 Fractionation of Nitrogen Isotopes by Animals: A Further Complication to the Use of Variations in the Natural Abundance of 15N Tracer Studies. Journal of Agricultural Science 90:79.Google Scholar
Sutoh, Madoka, Koyama, Takeo, and Yoneyama, Tadakatsu 1986 Variations of Natural 15N Abundances in the Tissues of Domestic Animals. Radioisotopes 36:7477.Google Scholar
Thomas, David Hurst 1986 Refiguring Anthropology: First Principles of Probability and Statistics. Waveland Press, Inc., Long Grove, Illinois. Google Scholar
Thornton, Erin Kennedy, Emery, Kitty F., Steadman, David W., Speller, Camilla, Matheny, Ray, and Yang, Dongya 2012 Earliest Mexican Turkeys (Meleagris gallopavo) in the Maya Region: Implications for Pre-Hispanic Animal Trade and the Timing of Turkey Domestication. PLoS ONE 7(8):e42630.Google Scholar
Tykot, Robert H. 2004 Stable Isotopes and Diet: You Are What You Eat. In Physics Methods in Archaeometry, edited by Marco Martini, Mario Milazzo, and M. Piacentini, pp. 433444. Proceedings of the International School of Physics “Enrico Fermi” Course CLIV. Società Italiana di Fisica, Bologna, Italy.Google Scholar
Tykot, Robert H. 2006 Isotope Analyses and the Histories of Maize. In Histories of Maize: Multidisciplinary Approaches to the Prehistory, Linguistic, Biogeographic, Domestication and Evolution of Maize, edited by John E. Staller, Robert H. Tykot, and Bruce F. Benz, pp.131142. Academic Press, New York.Google Scholar
Tykot, R. H., Falabella, F., Planella, M. T., Aspillaga, E., Sanhueza, L., and Becker, C. 2009 Stable Isotopes and Archaeology in Central Chile: Methodological Insights and Interpretive Problems for Dietary Reconstruction. International Journal of Osteoarchaeology 19:156170.CrossRefGoogle Scholar
Tyler, Hamilton A. 1991[1979] Pueblo Birds and Myths. Northland Publishing, Flagstaff, Arizona.Google Scholar
Vanderklift, Matthew A., and Ponsard, Sergine 2003 Sources of Variation in Consumer-Diet δ15N Enrichment: A Meta-Analysis. Oecologia 136:169182.Google Scholar
Van der Merwe, Nikolaas J. 1982 Carbon Isotopes, Photosynthesis, and Archaeology: Different Pathways of Photosynthesis Cause Characteristic Changes in Carbon Isotope Ratios that Make Possible the Study of Prehistoric Human Diets. American Scientist 70:596606.Google Scholar
Van der Merwe, Nikolaas J., and Vogel, J. C. 1978 13C Content of Human Collagen as a Measure of Prehistoric Diet in Woodland North America. Nature 276:815816.Google Scholar
Varien, Mark D., Ortman, Scott G., Kohler, Timothy A., Glowacki, Donna M., and David Johnson, C. 2007 Historical Ecology in the Mesa Verde Region: Results from the Village Ecodynamics Project. American Antiquity 72:273299.Google Scholar
Watts, Christopher M., White, Christine D., and Longstaffe, Fred J. 2011 Childhood Diet and Western Basin Tradition Foodways at the Krieger Site, Southwestern Ontario, Canada. American Antiquity 76:446472.Google Scholar
Webster, Laurie D. 2008 An Initial Assessment of Perishable Artifact Relationships Among Salmon, Aztec, and Chaco Canyon. In Chaco’s Northern Prodigies: Salmon, Aztec, and the Ascendancy of the Middle San Juan Region after AD 1100, edited by Paul F. Reed, pp.167169. University of Utah Press, Salt Lake City.Google Scholar