Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T17:58:42.714Z Has data issue: false hasContentIssue false

Acid Extraction as a Simple and Inexpensive Method for Compositional Characterization of Archaeological Ceramics

Published online by Cambridge University Press:  20 January 2017

James H. Burton
Affiliation:
Laboratory for Archaeological Chemistry, Department of Anthropology, University of Wisconsin-Madison, WI 53706
Arleyn W. Simon
Affiliation:
Department of Anthropology, Arizona State University, Tempe, AZ 85287

Abstract

An acid-extraction method for analyzing the composition of ceramics produces highly precise results capable of intraregional discrimination of production loci. The method is safe, inexpensive, minimally destructive, and uses widely available instrumentation. It produces results that are highly useful in archaeological interpretation as illustrated by selected case studies.

Resumen

Resumen

Un método de extracción-ácida en el análisis de componentes de materiales cerámicos produce resultados muy precisos capaces de discriminar centros de producción intraregionales. El método es seguro, de bajo costo y con mínimo riesgo de destrucción. Este proceso ofrece resultados muy útiles en la interpretación arqueológica como se ilustra en los casos aquí estudiados.

Type
Reports
Copyright
Copyright © Society for American Archaeology 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ahrens, L. H. 1965 Distribution of the Elements in our Planet. McGraw Hill, New York.Google Scholar
Arnold, D. E., Neff, H., and Bishop, R. L. 1991 Compositional Analysis and “Sources” of Pottery : An Ethnoarchaeological Approach. American Antiquity 56 : 7090.Google Scholar
Bishop, R. L., Canouts, V., Crown, P. L., and DeAtley, S. P. 1990 Sensitivity, Precision, and Accuracy : Their Roles in Ceramic Compositional Data Bases. American Antiquity 55 : 537546.Google Scholar
Bower, N. W., Bromund, R. H., and Smith, R. H. 1975 Atomic Absorption for the Archaeologist : An Application to Pottery from Pella of the Decapolis. Journal of Field Archaeology 2 : 389398.Google Scholar
Hart, F. A., and Adams, S. J. 1983 The Chemical Analysis of Romano-British Pottery from the Alice Holt Forest, Hampshire, by Means of Inductively-Coupled Plasma Emission Spectrometry. Archaeometry 25 : 179185.CrossRefGoogle Scholar
Hart, F. A., Storey, J. M. V., Adams, S. J., Symonds, R. P., and Walsh, J. N. 1987 An Analytical Study, Using Inductively Coupled Plasma (ICP) Spectrometry, of Samian and Colour-Coated Wares from the Roman Town at Colchester Together with Related Continental Samian Wares. Journal of Archaeological Science 14 : 57598.Google Scholar
Kilikoglou, V., Maniatis, Y., and Grimanis, A. P. 1988 The Effect of Purification and Firing of Clays on Trace Element Provenience Studies. Archaeometry 30 : 3746.CrossRefGoogle Scholar
Maggetti, M. 1982 Phase Analysis and Its Significance for Technology and Origin. In Archaeological Ceramics, edited by Olin, J. S. and Franklin, A. D., pp. 121133. Smithsonian Institution Press, Washington, D. C. Google Scholar
Porat, N., Yellin, J., L. Heller-Kallai, and Halicz, L. 1991 Correlation Between Petrography, NAA, and ICP Analyses : Application to Early Bronze Egyptian Pottery from Canaan. Geoarchaeology 6 : 133149.CrossRefGoogle Scholar
Sheridan, A. 1989 Pottery Production in Neolithic Ireland : A Petrological and Chemical Study. In Scientific Analysis in Archaeology and Its Interpretation, edited by Henderson, J., pp. 112135. Monograph No. 19. Oxford University Committee for Archaeology, and Archaeological Research Tools No. 5. UCLA Institute of Archaeology, Los Angeles.Google Scholar
Stone, T. T. 1992 The Process of Aggregation in the American Southwest : A Case Study from Zuni, New Mexico. Ph. D. dissertation, Arizona State University, Tempe. University Microfilms, Ann Arbor.Google Scholar
Torres, L. M., Arie, A. W., and Sandoval, B. 1984 Provenance Determination of Fine Orange Maya Ceramic Figurines by Flame Atomic Absorption Spectrometry. In Archaeological Chemistry, vol. 3, edited by Lambert, J. B., pp. 193213. Advances in Chemistry Series No. 205. American Chemical Society, Washington, D. C. Google Scholar
Tubb, A., Parker, A. J., and Nickless, G. 1980 The analysis of Romano-British Pottery by Atomic Absorption Spectrophotometry. Archaeometry 22 : 153171. 199 la Refining Inferences of Ceramic Circulation : A Stylistic, Technological, and Compositional Analysis of Whole Vessels from Chodistaas, Arizona. Unpublished Ph. D. dissertation, Department of Anthropology, Southern Methodist University, Dallas. CrossRefGoogle Scholar
Zedeiio, M. N. 1991b The Role of Population Movement and Technological Transfer in the Manufacture of Prehistoric Southwestern Ceramics. Paper presented at the 56th Annual Meeting of the Society for American Archaeology, New Orleans.Google Scholar