Skip to main content Accessibility help
×
Home

Function in engineering: Benchmarking representations and models

  • Joshua D. Summers (a1), Claudia Eckert (a2) and Ashok K. Goel (a3)

Abstract

This paper presents the requirements and needs for establishing a benchmarking protocol that considers representation characteristics, supported cognitive criteria, and enabled reasoning activities for the systematic comparison of function modeling representations. Problem types are defined as reverse engineering, familiar products, novel products, and single-component systems. As different modeling approaches share elements, a comparison of modeling approaches on multiple levels was also undertaken. It is recommended that researchers and developers of function modeling representations collaborate to define a canonically acceptable set of benchmark tests and evaluations so that clear benefits and weaknesses for the disparate collection of approaches can be compared. This paper is written as a call to action for the research community to begin establishing a benchmarking standard protocol for function modeling comparison purposes. This protocol should be refined with input from developers of the competing approaches in an academically open environment. At the same time, the benchmarking criteria identified should also serve as a guide for validating a modeling approach or analyzing its failure.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Function in engineering: Benchmarking representations and models
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Function in engineering: Benchmarking representations and models
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Function in engineering: Benchmarking representations and models
      Available formats
      ×

Copyright

Corresponding author

Reprint requests to: Joshua D. Summers, 203 Engineering Innovation Building, Fluor Daniel, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA. E-mail: jsummer@clemson.edu

References

Hide All
Agyemang, M., Turner, C.J., & Linsey, J. (2017). Transforming functional models to critical chain models via expert knowledge and automatic parsing rules for design analogy identification. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 31(4), 501511.
Albers, A., Thau, S., & Alink, T. (2008). Support of design engineering activity through C & CM—temporal decomposition of design problems. Proc. Tools and Methods for Competitive Engineering Conf. (Horvath, I., Ed.), pp. 295–306, Izmir, Turkey.
Andreasen, M.M., & Hein, L. (1987). Integrated Product Development. London: IFS Publications.
Arlitt, R.M., Stone, R.B., & Tumer, I.Y. (2016). Impacts of function-related research on education and industry. In Impact of Design Research on Industrial Practice (Chakrabarti, A., & Lindemann, U., Eds.), pp. 7799. New York: Springer.
Bhatta, S.R., & Goel, A.K. (1997). A functional theory of design patterns. Proc. 15th Int. Joint Conf. Artificial Intelligence, Vol. 1, pp. 294–300, Nagoya, Japan.
Blackwell, A., Britton, C., Cox, A., Green, T., Gurr, C., Kadoda, G., Kutar, M., Loomes, M., Nehaniv, C., Petre, M. (2001). Cognitive dimensions of notations: design tools for cognitive technology. In Cognitive Technology: Instruments of Mind (Beynon, M., Nehaniv, C., & Dautenhahn, K., Eds.), LNCS, Vol. 2117, pp. 325341. Berlin: Springer.
Bohm, M., Stone, R., & Szykman, S. (2005). Enhancing virtual product representations for advanced design repository systems. ASME Transactions Journal of Computing and Information Science in Engineering 5(4), 360372.
Bracewell, R.H., & Sharpe, J.E.E. (1996). Functional descriptions used in computer support for qualitative scheme generation—“Schemebuilder.” Artificial Intelligence for Engineering Design, Analysis and Manufacturing 10(4), 333345.
Braha, D., & Maimon, O. (1998). The measurement of a design structural and functional complexity. IEEE Transactions on Systems, Man, and Cybernetics: Part A—Systems and Humans 28(4), 527535.
Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646657. doi:10.1109/TEVC.2006.872133
Bryant, C.R., McAdams, D.A., Stone, R.B., Kurtoglu, T., & Campbell, M.I. (2006). A validation study of an automated concept generator design tool. Proc. ASME Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., Vol. DTM, pp. 283–294. Philadelphia, PA: ASME.
Buede, D.M., & Miller, W.D. (2016). The Engineering Design of Systems: Models and Methods. Hoboken, NJ: Wiley.
Caldwell, B.W., Ramachandran, R., & Mocko, G.M. (2012). Assessing the use of function models and interaction models through concept sketching. Proc. ASME Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., pp. 633–646, Chicago.
Caldwell, B.W., Thomas, J., Sen, C., Mocko, G.M., & Summers, J.D. (2012). The effects of language and pruning on function structure interpretability. Journal of Mechanical Design 134(6), 61001. doi:10.1115/1.4006442
Campean, I.F., Henshall, E., & Rutter, B. (2013). Systems engineering excellence through design: an integrated approach based on failure mode avoidance. SAE International Journal of Materials and Manufacturing 6(2013-01–0595), 389401.
Cebrian-Tarrason, D., Lopez-Montero, J.A., & Vidal, R. (2008). OntoFaBeS: ontology design based in FBS framework. Proc. CIRP Design Conference: Design Synthesis. Enschede, The Netherlands: CIRP.
Chandrasekaran, B. (2005). Representing function: relating functional representation and functional modeling research streams. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19(2), 6574.
Chiang, W.-C., Pennathur, A., & Mital, A. (2001). Designing and manufacturing consumer products for functionality: a literature review of current function definitions and design support tools. Integrated Manufacturing Systems 12(6), 430448. doi:10.1108/EUM0000000006108
Collins, J.A., Hagan, B.T., & Bratt, H.M. (1976). The failure-experience matrix—a useful design tool. Journal of Engineering for Industry 98(3), 1074. doi:10.1115/1.3439009
Crilly, N. (2010). The roles that artefacts play: technical, social and aesthetic functions. Design Studies 31(4), 311344.
Deng, Y.M. (2002). Function and behavior representation in conceptual mechanical design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 16(5), 343362. Retrieved from doi:10.1017/S0890060402165024
Dolan, E.D., & Moré, J.J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming 91(2), 201213.
Eastman, C.M. (1969). Cognitive processes and ill-defined problems: a case study from design. Proc. Joint Int. Conf. Artificial Intelligence, Vol. 69, pp. 669–690, Washington, DC.
Eckert, C. (2013). That which is not form: the practical challenges in using functional concepts in design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 217231.
Eckert, C., Alink, T., Ruckpaul, A., & Albers, A. (2011). Different notions of function: results from an experiment on the analysis of an existing product. Journal of Engineering Design 22(11–12), 811837. doi:10.1080/09544828.2011.603297
Eckert, C., Ruckpaul, A., Alink, T., & Albers, A. (2012). Variations in functional decomposition for an existing product: experimental results. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 26(2), 107128.
Eckert, C.M., & Stacey, M.K. (2014). Constraints and conditions: drivers for design processes. In An Anthology of Theories and Models of Design (Chakrabarti, A., & Blessing, L.T.M., Eds.), pp. 395–415. London: Springer.
Erden, M.S., Komoto, H., van Beek, T.J., D'Amelio, V., Echavarria, E., & Tomiyama, T. (2008). A review of function modeling: approaches and applications. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 22(2), 147169. doi:10.1017/S0890060408000103
Fenves, S.J., Foufou, S., Bock, C., & Sriram, R.D. (2008). CPM2: a core model for product data. Journal of Computing and Information Science in Engineering 8(1), 14501.
Freeman, P., & Newell, A. (1971). A model for functional reasoning in design. Proc. 2nd Int. Joint Conf. Artificial Intelligence, pp. 1–2, London, September 1–3.
Gaffney, E.S., Maier, J.R.A., & Fadel, G.M. (2007). Roles of function and affordance in the evolution of artifacts. Proc. Int. Conf. Engineering Design, ICED, pp. 1–12. Paris: Design Society.
Gericke, K., & Eisenbart, B. (2017). The integrated function modelling framework and its relation to function structures. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 31(4), 436457.
Gero, J. (1996). Creativity, emergence, and evolution in design. Knowledge-Based Systems 9(7), 435448.
Gero, J., & Kannengiesser, U. (2002). The situated-function-behaviour-structure framework. In Artificial Intelligence in Design (Gero, J., Ed.), pp. 89104. Norwell, MA: Kluwer Academic.
Gero, J.S., & Kannengiesser, U. (2004). The situated function-behaviour-structure framework. Design Studies 25(4), 373391. doi:10.1016/j.destud.2003.10.010
Gill, A., & Summers, J.D. (2016). Impact of level of detail and information content on accuracy of function structure-based market price prediction models. Proc. ASME Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., Paper No. DETC2016-59662. Charlotte, NC: ASME.
Goel, A.K. (1997). Design, analogy, and creativity. IEEE Intelligent Systems 12(3), 6270.
Goel, A.K. (2013). One thirty year long case study: fifteen principles: implications of the AI methodology for functional modeling. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 203215.
Goel, A.K., & Bhatta, S.R. (2004). Use of design patterns in analogy-based design. Advanced Engineering Informatics 18(2), 8594.
Goel, A.K., Rugaber, S., & Vattam, S. (2009). Structure, behavior, and function of complex systems: the structure, behavior, and function modeling language. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 23(1), 23.
Green, T. (1991). Describing information artifacts with cognitive dimensions and structure maps. In People and Computers VI, Proc. HCI'91 (Diaper, D., & Hammond, N., Eds.), pp. 297315. New York: Cambridge University Press.
Green, T., & Petre, M. (1996). Usability analysis of visual programming environments: a “cognitive dimensions” framework. Journal of Visual Languages and Computing 7(2), 131174.
Hamraz, B., Caldwell, N.H.M., & Clarkson, P. (2012). A multidomain engineering change propagation model to support uncertainty reduction and risk management in design. Journal of Mechanical Design 134(10), 100905.
Hannah, R., Joshi, S., & Summers, J.D. (2011). A user study of interpretability of engineering design representations. Journal of Engineering Design 23(6), 443468. doi:10.1080/09544828.2011.615302
Hirtz, J., Stone, R.B., McAdams, D.A., Szykman, S., & Wood, K.L. (2002). A functional basis for engineering design: reconciling and evolving previous efforts. Research in Engineering Design 13(2), 6582.
Huang, Z., & Jin, Y. (2009). Extension of stress and strength interference theory for conceptual design-for-reliability. Journal of Mechanical Design 131(7), 71001.
Hubka, V., & Eder, W.E. (1988). Theory of Technical Systems: A Total Concept Theory for Engineering Design, Vol. 1. New York: Springer Verlag.
Joshi, S., & Summers, J.D. (2014). Impact of requirements elicitation activity on idea generation: a designer study. Proc. ASME 2014 Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., pp. V007T07A026-V007T07A026. New York: ASME.
Kirschman, C.F., & Fadel, G.M. (1998). Classifying functions for mechanical design. Journal of Mechanical Design 120(3), 475482. doi:10.1115/1.2829176
Kurfman, M.A., Stock, M.E., Stone, R.B., Rajan, J., & Wood, K.L. (2003). Experimental studies assessing the repeatability of a functional modeling derivation method. Journal of Mechanical Design 125(4), 682693.
Kurtoglu, T., & Tumer, I. (2008). A graph-based fault identification and propagation framework for functional design of complex systems. ASME Transactions Journal of Mechanical Design 130(5), 18.
Linsey, J.S., Tseng, I., Fu, K., Cagan, J., Wood, K.L., & Schunn, C. (2010). A study of design fixation, its mitigation and perception in engineering design faculty. Journal of Mechanical Design 132(4), 41003.
Linz, P. (2011). An Introduction to Formal Languages and Automata, 5th ed. Sudberry, MA: Jones & Bartlett.
Lucero, B., Viswanathan, V.K., Linsey, J.S., & Turner, C.J. (2014). Identifying critical functions for use across engineering design domains. Journal of Mechanical Design 136(12), 121101.
Maier, J.R.A., Ezhilan, T., Fadel, G.M., Summers, J.D., & Mocko, G. (2007). A hierarchical requirements modeling scheme to support engineering innovation. Proc. Int. Conf. Engineering Design, pp. 839–840. Paris: Design Society.
Maier, J.R.A., Srinivasan, A., Vikram, B., Summers, J.D., & Bernhard, B. (2007). A computational framework for semantically rich design problems based on the theory of affordances and examplar technology. Proc. Int. Conf. Engineering Design, pp. 205–206. Paris: Design Society.
Mathieson, J.L., Arlitt, R., Summers, J.D., Stone, R., Shanthakumar, A., & Sen, C. (2011). Complexity as a surrogate mapping between function models and market value. Proc. ASME Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., Paper No. DETC2011--47481. Washington, DC: ASME.
McKoy, F.L., Vargas-Hernández, N., Summers, J.D., & Shah, J.J. (2001). Influence of design representation on effectiveness of idea generation. Proc. ASME Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf. Pittsburgh, PA: ASME.
Mocko, G.M., Summers, J.D., Teegavarapu, S., Ezhilan, T., Maier, J.R.A., & Fadel, G.M. (2007). A modelling scheme for capturing and analyzing conceptual desing information: an application to the hair dryer example and comparison to existing literature. Proc. Int. Conf. Engineering Design, Paper No. DS42_P_570. Paris: Design Society.
Mohinder, C.V.S.R., Gill, A., & Summers, J.D. (2017). Using the graph complexity connectivity method to predict information from design representations: a comparative study. Proc. Design Computing and Cognition’16, pp. 667–683. Berlin: Springer.
Mokhtarian, H., Coatanea, E., & Henri, P. (2017). Function modeling combined with physics-based reasoning for assessing design options and supporting innovative ideation. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 31(4), 476500.
Nagel, R.L., Bohm, M.R., Linsey, J.S., & Riggs, M.K. (2015). Improving students’ functional modeling skills: a modeling approach and a scoring rubric. Journal of Mechanical Design 137(5), 51102.
Nagel, R.L., Perry, K.L., Stone, R.B., & McAdams, D.A. (2009). FunctionCAD: a functional modeling application based on the function design framework. Proc. ASME Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., pp. 591–600. San Diego, CA: ASME.
Nagel, R.L., Stone, R.B., Hutcheson, R.S., McAdams, D.A., & Donndelinger, J.A. (2008). Function design framework (FDF): integrated process and function modeling for complex systems. Proc. Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., pp. 273–286. Brooklyn, NY: ASME.
Nagel, R.L., Vucovich, J.P., Stone, R.B., & McAdams, D.A. (2008). A signal grammar to guide functional modeling of electromechanical products. Journal of Mechanical Design 130(5), 51101.
Nebel, B. (2000). On the compilability and expressive power of propositional planning formalisms. Journal of Artificial Intelligence Research 12(1), 271315.
Olewnik, A.T., & Lewis, K. (2005). On calidating engineering design decision support tools. Concurrent Engineering 13(2), 111122.
Ostergaard, K.J., Wetmore, W. R. III., Divekar, A., Vitali, H., & Summers, J.D. (2005). An experimental methodology for investigating communication in collaborative design review meetings. Co-Design 1(3), 169185.
Otto, K.N., & Wood, K.L. (1998). Product evolution: a reverse engineering and redesign methodology. Research in Engineering Design 10(4), 226243.
Otto, K., & Wood, K. (2001). Product Design Techniques in Reverse Engineering and New Product Development. Upper Saddle River, NJ: Prentice Hall.
Pahl, G., Beitz, W., Blessing, L., Feldhusen, J., Grote, K.-H.H., & Wallace, K. (2013). Engineering Design: A Systematic Approach, 3rd ed., Vol. 11. London: Springer-Verlag.
Patel, A., Andrews, P., & Summers, J.D. (2016). Evaluating the use of artificial neural networks to predict assembly defects. Proc. Int. Design Engineering Conf. Computers in Engineering Conf. (ASME IDETC/CIE), Paper No. DETC2016-59664. Charlotte, NC: ASME.
Patel, A., Kramer, W., Summers, J.D., & Shuffler-Porter, M. (2016). Function modeling: a study of sequential model completion based on count and chaining of functions. Proc. ASME Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., Paper No. DETC2016-59860. Charlotte, NC: ASME.
Peterson, C. (1990). Parallel distributed approaches to combinatorial optimization: benchmark studies on traveling salesman problem. Neural Computation 2(3), 261269.
Qian, L., & Gero, J.S. (1996). Function-behavior-structure paths and their role in analogy-based design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing 10(4), 289312.
Rajamani, R. (2012). Roll dynamics and rollover prevention. In Vehicle Dynamics and Control (Ling, F.F., Ed.), pp. 427456. Boston: Springer.
Regli, W.C., Hu, X., Atwood, M., & Sun, W. (2000). A survey of design rationale systems: approaches, representation, capture and retrieval. Engineering With Computers 16(3), 209235.
Richardson, J.L. III, Summers, J.D., & Mocko, G.M. (2011). Function representations in morphological charts: an experimental study on variety and novelty on means generated. Interdisciplinary Design: Proc. 21st CIRP Design Conf., pp. 76–84, Daejeon, South Korea.
Rodenacker, W. (1971). Methodisches Konstruieren. Berlin: Springer-Verlag.
Rosenman, M.A., & Gero, J.S. (1998). Purpose and function in design: from the socio-cultural to the techno-physical. Design Studies 19(2), 161186.
Sasajima, M., Kitamura, Y., Ikeda, M., & Mizoguchi, R. (1995). FBRL: a function and behavior representation language. Proc. Int. Joint Conf, Artificial Intelligence, Montreal.
Schultz, J., Sen, C., Caldwell, B., Mathieson, J., Summers, J.D., & Mocko, G.M. (2010). Limitations to function structures: a case study in morphing airfoil design. Proc. International Design Engineering Technical Conf. Computers and Information in Engineering Conf., Paper No. DETC2010-28559. Montreal: ASME.
Sembugamoorthy, V., & Chandrasekaran, B. (1986). Functional representation of devices and compilation of diagnostic problem-solving systems. In Experience, Memory, and Reasoning (Kolodner, J., & Riesbeck, C.K., Eds.), pp. 4753. Hillsdale, NJ: Erlbaum.
Sen, C., & Summers, J.D.J. (2014). A pilot protocol study on how designers construct function structures in novel design. Proc. Design Computing and Cognition'12 (Gero, J., Ed.), pp. 247–264. College Station, TX: Springer-Verlag.
Sen, C., Summers, J.D., & Mocko, G.M. (2011 a). A protocol to formalise function verbs to support conservation-based model checking. Journal of Engineering Design 22(11–12), 765788.
Sen, C., Summers, J.D., & Mocko, G.M. (2011 b). Exploring potentials for conservational reasoning using topologic rules of function structure graphs. Proc. 18th Int. Conf. Engineering Design (ICED11), Vol. 9, pp. 377–388, Copenhagen, Denmark.
Sen, C., Summers, J.D., & Mocko, G.M. (2013 a). A formal representation of function structure graphs for computer-directed modeling and conservation-based reasoning. ASME Transactions Journal of Computing and Information Science in Engineering 13(2), 21001.
Sen, C., Summers, J.D., & Mocko, G.M. (2013 b). A formal representation of function structure graphs for physics-based reasoning. Journal of Computing and Information Science in Engineering 13(2), 21001.
Sen, C., Summers, J.D., & Mocko, G.M. (2013 c). Physics-based reasoning in conceptual design using a formal representation of function structure graphs. Journal of Computing and Information Science in Engineering 13(1), 11008.
Shah, J.J., & Mantyla, M. (1995). Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications. New York: Wiley.
Smith, G., Richardson, J., Summers, J.D., & Mocko, G.M. (2012). Concept exploration through morphological charts: an experimental study. Journal of Mechanical Design 134(5), 051004.1-10.
Sridhar, S., Fazelpour, M., Gill, A.S., & Summers, J.D. (2016). Accuracy and precision analysis of the graph complexity connectivity method. Procedia CIRP 44, 163168.
Srinivasan, V., Chakrabarti, A., & Lindemann, U. (2012). A framework for describing functions in design. Proc. Int. Design Conf., pp. 1111–1122. Dubrovnik, Croatia.
Stacey, M., & Eckert, C. (2010). Reshaping the box: creative designing as constraint management. International Journal of Product Development 11(3–4), 241255.
Stone, R.B., Tumer, I.Y., & Van Wie, M. (2005). The function-failure design method. ASME Transactions Journal of Mechanical Design 127(3), 397407.
Sturges, R.H., O'Shaughnessy, K., & Kilani, M.I. (1996). Computational model for conceptual design based on extended function logic. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 10(4), 255274.
Suh, N. (1999). A theory of complexity, periodicity, and the design axioms. Research in Engineering Design 11(2), 116131.
Summers, J.D., Eckert, C.M., & Goel, A.K. (2017). Function in engineering: benchmarking representations and models. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 31(4), 401412.
Summers, J.D., & Rosen, D.W. (2013). Mechanical engineering modeling language: foundations. Proc. Int. Conf. Engineering Design. Seoul, South Korea: Design Society.
Summers, J.D., & Shah, J.J. (2004). Representation in engineering design: a framework for classification. Proc. Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf., Paper No. DTM-57514. Salt Lake City, UT: ASME.
Summers, J.D., & Shah, J.J. (2010). Mechanical engineering design complexity metrics: size, coupling, and solvability. Journal of Mechanical Design 132(2), 21004.
Telenko, C., & Seepersad, C.C. (2010). A methodology for identifying environmentally conscious guidelines for product design. Journal of Mechanical Design 132(9), 91009.
Thiagarajan, A., Patel, A., O'Shields, S., & Summers, J.D. (2017). Functional thinking: a protocol study to map modeling behavior of designers. Proc. Design Cognition and Computing (DCC16) (Gero, J.S., Ed.), pp. 339–357. Evanston, IL: Springer.
Tomiyama, T., Van Beek, T.J., Cabrera, A.A.A., Komoto, H., & D'Amelio, V. (2013). Making function modeling practically usable. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 301309.
Ullman, D.G. (2010). The Mechanical Design Process, 4th ed. New York: McGraw-Hill.
Ullman, D.G., Dietterich, T.G., & Stauffer, L.A. (1988). A model of the mechanical design process based on empirical data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 2(1), 3352.
Ulrich, K., & Eppinger, S.D. (2008). Product Design and Development, 4th ed. New York: McGraw-Hill.
Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., & Tomiyama, T. (1996). Supporting conceptual design based on the function-behavior-state modeler. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 10(4), 275288.
Vargas-Hernandez, N., & Shah, J.J. (2004). 2 nd-CAD: a tool for conceptual systems design in electromechanical domain. Journal of Computing and Information Science in Engineering 4(1), 2836.
Vermaas, P.E. (2013). On the co-existence of engineering meanings of function: four responses and their methodological implications. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 27(3), 119.
Vescovi, M., Iwasaki, Y., Fikes, R., & Chandrasekaran, B. (1993). CFRL: a language for specifying the causal functionality of engineered devices. Proc. 11th National Conf. Artificial Intelligence. Washington, DC: American Association for Artificial Intelligence.
Wang, C., Qing-liang, Z., & Albers, A. (2009). A unified product model based on C&CM for mechatronic product development. Proc. ICMA Int. Conf. Mechatronics and Automation, pp. 2173–2177. New York: IEEE.
Wetmore, W.R. III, Summers, J.D., & Greenstein, J.S. (2010). Experimental study of influence of group familiarity and information sharing on design review effectiveness. Journal of Engineering Design 21(1), 111126.
Wiltgen, B., & Goel, A. (2016). Functional model simulation for evaluating design concepts. Advances in Cognitive Systems. Advance online publication.
Winston, P.H. (2005). Artificial Intelligence, 4th ed. Reading, MA: Addison-Wesley.
Worinkeng, E., Joshi, S., & Summers, J.D. (2015). An experimental study: analyzing requirement type influence on novelty and variety of generated solutions. International Journal of Design Creativity and Innovation 3(2), 6177.
Yang, S., Patil, L., & Dutta, D. (2010). Function semantic representation (FSR): a rule-based ontology for product functions. ASME Journal of Computing and Information Science in Engineering 10, 31001.
Yildirim, U., Campean, F., & Williams, H. (2017). Function modelling using the system state flow diagram. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 31(4), 413435.

Keywords

Related content

Powered by UNSILO

Function in engineering: Benchmarking representations and models

  • Joshua D. Summers (a1), Claudia Eckert (a2) and Ashok K. Goel (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.