[1]
Aristoff, D. and Radin, C. (2013). Emergent structures in large networks. J. Appl. Prob.
50, 883–888.

[2]
Aristoff, D. and Zhu, L. (2015). Asymptotic structure and singularities in constrained directed graphs. Stoch. Process. Appl.
125, 4154–4177.

[3]
Badev, A. (2013). Discrete games in endogenous networks: theory and policy. Working paper. University of Pennsylvania.

[4]
Besag, J. (1975). Statistical analysis of non-lattice data. J. R. Statist. Soc. D
24, 179–195.

[6]
Chatterjee, S. and Diaconis, P. (2013). Estimating and understanding exponential random graph models. Ann. Statist.
41, 2428–2461.

[7]
Chatterjee, S. and Varadhan, S. R. S. (2011). The large deviation principle for the Erdős–Rényi random graph. Europ. J. Combin.
32, 1000–1017.

[8]
Cheng, J., Romero, D. M., Meeder, B. and Kleinberg, J. (2011). Predicting reciprocity in social networks. In Proc. IEEE Third International Conference on Social Computing, IEEE, pp. 49–56.

[9]
Fienberg, S. E. (2010). Introduction to papers on the modeling and analysis of network data. Ann. Appl. Statist.
4, 1–4.

[10]
Fienberg, S. E. (2010). Introduction to papers on the modeling and analysis of network data–II. Ann. Appl. Statist.
4, 533–534.

[12]
Gallavotti, G. (1999). Statistical Mechanics: A Short Treatise. Springer, Berlin.

[13]
Häggström, O. and Jonasson, J. (1999). Phase transition in the random triangle model. J. Appl. Prob.
36, 1101–1115.

[14]
Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. J. Amer. Statist. Assoc.
76, 33–65.

[15]
Lebowitz, J. L., Mazel, A. E. and Presutti, E. (1998). Rigorous proof of a liquid-vapor phase transition in a continuum particle system. Phys. Rev. Lett.
80, 4701–4704.

[16]
Lovász, L. (2009). Very large graphs. In Current Developments in Mathematics, 2008, International Press, Somerville, MA, pp. 67–128.

[17]
Mele, A. (2017). A structural model of dense network formation. Econometrica
85, 825–850.

[19]
Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press.

[20]
Newman, M. E. J., Forrest, S. and Balthrop, J. (2002). Email networks and the spread of computer viruses. Phys. Rev. E
66, 035101.

[21]
Park, J. and Newman, M. E. J. (2004). Solution of the two-star model of a network. Phys. Rev. E
70, 066146.

[22]
Park, J. and Newman, M. E. J. (2005). Solution for the properties of a clustered network. Phys. Rev. E
72, 026136.

[23]
Radin, C. and Yin, M. (2013). Phase transitions in exponential random graphs. Ann. Appl. Prob.
23, 2458–2471.

[24]
Rinaldo, A., Fienberg, S. and Zhou, Y. (2009). On the geometry of discrete exponential families with application to exponential random graph models. Electron. J. Statist.
3, 446–484.

[25]
Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph models. J. Social Structure
3, 40pp.

[26]
Snijders, T. A. B., Pattison, P. E., Robins, G. L. and Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological Methodol.
36, 99–153.

[27]
Train, K. E. (2009). Discrete Choice Methods with Simulation, 2nd edn. Cambridge University Press.

[28]
Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press.

[29]
Yang, C. N. and Lee, T. D. (1952). Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. (2)
87, 404–409.

[30]
Yin, M. (2013). Critical phenomena in exponential random graphs. J. Statist. Phys.
153, 1008–1021.