Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T11:48:47.377Z Has data issue: false hasContentIssue false

On Statistical Properties of Sets Fulfilling Rolling-Type Conditions

Published online by Cambridge University Press:  04 January 2016

A. Cuevas*
Affiliation:
Universidad Autónoma de Madrid
R. Fraiman*
Affiliation:
Universidad de San Andrés and Universidad de la República
B. Pateiro-López*
Affiliation:
Universidad de Santiago de Compostela
*
Postal address: Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
∗∗ Postal address: Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina.
∗∗∗ Postal address: Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Email address: beatriz.pateiro@usc.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Motivated by set estimation problems, we consider three closely related shape conditions for compact sets: positive reach, r-convexity, and the rolling condition. First, the relations between these shape conditions are analyzed. Second, for the estimation of sets fulfilling a rolling condition, we obtain a result of ‘full consistency’ (i.e. consistency with respect to the Hausdorff metric for the target set and for its boundary). Third, the class of uniformly bounded compact sets whose reach is not smaller than a given constant r is shown to be a P-uniformity class (in Billingsley and Topsøe's (1967) sense) and, in particular, a Glivenko-Cantelli class. Fourth, under broad conditions, the r-convex hull of the sample is proved to be a fully consistent estimator of an r-convex support in the two-dimensional case. Moreover, its boundary length is shown to converge (almost surely) to that of the underlying support. Fifth, the above results are applied to obtain new consistency statements for level set estimators based on the excess mass methodology (see Polonik (1995)).

Type
Stochastic Geometry and Statistical Applications
Copyright
© Applied Probability Trust 

References

Ambrosio, L., Colesanti, A. and Villa, E. (2008). Outer Minkowski content for some classes of closed sets. Math. Ann. 342, 727748.Google Scholar
Baı´llo, A. and Cuevas, A. (2001). On the estimation of a star-shaped set. Adv. Appl. Prob. 33, 717726.CrossRefGoogle Scholar
Biau, G., Cadre, B. and Pelletier, B. (2008). Exact rates in density support estimation. J. Multivariate Anal. 99, 21852207.CrossRefGoogle Scholar
Biau, G., Cadre, B., Mason, D. M. and Pelletier, B. (2009). Asymptotic normality in density support estimation. Electron. J. Prob. 14, 26172635.Google Scholar
Billingsley, P. and Topsøe, F. (1967). Uniformity in weak convergence. Z. Wahrscheinlichkeitsth. 7, 116.Google Scholar
Bickel, P. J. and Millar, P. W. (1992). Uniform convergence of probability measures on classes of functions. Statist. Sinica 2, 115.Google Scholar
Colesanti, A. and Manselli, P. (2010). Geometric and isoperimetric properties of sets of positive reach in E d . Preprint.Google Scholar
Cuevas, A. and Fraiman, R. (2009). Set estimation. In New Perspectives on Stochastic Geometry, eds Kendall, W. S. and Molchanov, I., Oxford University Press, pp. 366389.Google Scholar
Cuevas, A. and Rodrı´guez-Casal, A. (2004). On boundary estimation. Adv. Appl. Prob. 36, 340354.Google Scholar
Cuevas, A., Fraiman, R. and Rodrı´guez-Casal, A. (2007). A nonparametric approach to the estimation of lengths and surface areas. Ann. Statist. 35, 10311051.CrossRefGoogle Scholar
Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition. Springer, New York.Google Scholar
Dümbgen, L. and Walther, G. (1996). Rates of convergence for random approximations of convex sets. Adv. Appl. Prob. 28, 384393.Google Scholar
Federer, H. (1959). Curvature measures. Trans. Amer. Math. Soc. 93, 418491.Google Scholar
Gruber, P. M. and Wills, J. M. (eds) (1993). Handbook of Convex Geometry. North-Holland, Amsterdam.Google Scholar
Hartigan, J. A. (1987). Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc. 82, 267270.Google Scholar
Jiménez, R. and Yukich, J. E. (2011). Nonparametric estimation of surface integrals. Ann. Statist. 39, 232260.Google Scholar
Mani-Levitska, P. (1993) Characterizations of convex sets. In Handbook of Convex Geometry, eds Gruber, P. M. and Wills, J. M., North-Holland, Amsterdam, pp. 1941.Google Scholar
Mason, D. M. and Polonik, W. (2009). Asymptotic normality of plug-in level set estimates. Ann. Appl. Prob. 19, 11081142.CrossRefGoogle Scholar
Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press.Google Scholar
Müller, D. W. and Sawitzki, G. (1991). Excess mass estimates and tests for multimodality. J. Amer. Statist. Assoc. 86, 738746.Google Scholar
Pateiro-López, B. and Rodrı´guez-Casal, A. (2008). Length and surface area estimation under smoothness restrictions. Adv. Appl. Prob. 40, 348358.CrossRefGoogle Scholar
Pateiro-López, B. and Rodrı´guez-Casal, A. (2010). Generalizing the convex hull of a sample: the R package alphahull. J. Statist. Software 34, 128.CrossRefGoogle Scholar
Perkal, J. (1956). Sur les ensembles ε-convexes. Colloq. Math. 4, 110.Google Scholar
Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.Google Scholar
Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters—an excess mass approach. Ann. Statist. 23, 855881.CrossRefGoogle Scholar
Polonik, W. and Wang, Z. (2005). Estimation of regression contour clusters—an application of the excess mass approach to regression. J. Multivariate Anal. 94, 227249.CrossRefGoogle Scholar
Rataj, J. (2005). On boundaries of unions of sets with positive reach. Beiträge Algebra Geom. 46, 397404.Google Scholar
Reitzner, M. (2009). Random polytopes. In New Perspectives on Stochastic Geometry, eds Kendall, W. S. and Molchanov, I., Oxford University Press, pp. 4575.Google Scholar
Rodrı´guez-Casal, A. (2007). Set estimation under convexity-type assumptions. Ann. Inst. H. Poincaré Prob. Statist. 43, 763774.Google Scholar
Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.Google Scholar
Walther, G. (1997). Granulometric smoothing. Ann. Statist. 25, 22732299.CrossRefGoogle Scholar
Walther, G. (1999). On a generalization of Blaschke's rolling theorem and the smoothing. Math. Methods Appl. Sci. 22, 301316.Google Scholar