Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T19:17:25.621Z Has data issue: false hasContentIssue false

Migration–contagion processes

Published online by Cambridge University Press:  18 August 2023

F. Baccelli*
Affiliation:
INRIA and Telecom Paris
S. Foss*
Affiliation:
Heriot-Watt University and Sobolev Institute of Mathematics
S. Shneer*
Affiliation:
Heriot-Watt University
*
*Postal address: INRIA Paris, 2 rue Simone Iff, Paris 75012, France. Email address: francois.baccelli@ens.fr
**Postal address: School of MACS, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
**Postal address: School of MACS, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.

Abstract

Consider the following migration process based on a closed network of N queues with $K_N$ customers. Each station is a $\cdot$/M/$\infty$ queue with service (or migration) rate $\mu$. Upon departure, a customer is routed independently and uniformly at random to another station. In addition to migration, these customers are subject to a susceptible–infected–susceptible (SIS) dynamics. That is, customers are in one of two states: I for infected, or S for susceptible. Customers can swap their state either from I to S or from S to I only in stations. More precisely, at any station, each susceptible customer becomes infected with the instantaneous rate $\alpha Y$ if there are Y infected customers in the station, whereas each infected customer recovers and becomes susceptible with rate $\beta$. We let N tend to infinity and assume that $\lim_{N\to \infty} K_N/N= \eta $, where $\eta$ is a positive constant representing the customer density. The main problem of interest concerns the set of parameters of such a system for which there exists a stationary regime where the epidemic survives in the limiting system. The latter limit will be referred to as the thermodynamic limit. We use coupling and stochastic monotonicity arguments to establish key properties of the associated Markov processes, which in turn allow us to give the structure of the phase transition diagram of this thermodynamic limit with respect to $\eta$. The analysis of the Kolmogorov equations of this SIS model reduces to that of a wave-type PDE for which we have found no explicit solution. This plain SIS model is one among several companion stochastic processes that exhibit both random migration and contagion. Two of them are discussed in the present paper as they provide variants to the plain SIS model as well as some bounds and approximations. These two variants are the departure-on-change-of-state (DOCS) model and the averaged-infection-rate (AIR) model, which both admit closed-form solutions. The AIR system is a classical mean-field model where the infection mechanism based on the actual population of infected customers is replaced by a mechanism based on some empirical average of the number of infected customers in all stations. The latter admits a product-form solution. DOCS features accelerated migration in that each change of SIS state implies an immediate departure. This model leads to another wave-type PDE that admits a closed-form solution. In this text, the main focus is on the closed stochastic networks and their limits. The open systems consisting of a single station with Poisson input are instrumental in the analysis of the thermodynamic limits and are also of independent interest. This class of SIS dynamics has incarnations in virtually all queueing networks of the literature.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baccelli, F. and Brémaud, P. (2003). Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Recurrences, 2nd edn. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Baccelli, F., Foss, S. and Shneer, S. (2022). Migration–contagion processes. Preprint. Available at https://arxiv.org/abs/2208.03512.Google Scholar
Baccelli, F. and Ramesan, N. (2022). A computational framework for evaluating the role of mobility on the propagation of epidemics on point processes. J. Math. Biol. 84, article no. 4.CrossRefGoogle Scholar
Britton, T. and Neal, P. (2010). The time to extinction for a stochastic SIS-household-epidemic model. J. Math. Biol. 61, 763779.CrossRefGoogle ScholarPubMed
Donnelli, P. (1993). The correlation structure of epidemic models. Math. Biosci. 117, 4975.CrossRefGoogle Scholar
Figueiredo, D., Iacobelli, G. and Shneer, S. (2020). The end time of SIS epidemics driven by random walks on edge-transitive graphs. J. Statist. Phys. 179, 651671.CrossRefGoogle Scholar
Ganesan, G. (2015). Infection spread in random geometric graphs. Adv. Appl. Prob. 47, 164181.CrossRefGoogle Scholar
Hao, C. V. (2018). Super-exponential extinction time of the contact process on random geometric graphs. Combinatorics Prob. Comput. 27, 162185.Google Scholar
Krishnarajah, I., Cook, A., Marion, G. and Gibson, G. (2005). Novel moment closure approximations in stochastic epidemics. Bull. Math. Biol. 67, 855873.CrossRefGoogle ScholarPubMed
Kuehn, C. (2016). Moment closure—a brief review. In Control of Self-Organizing Nonlinear Systems, Springer, Cham, pp. 253271.CrossRefGoogle Scholar
Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Ménard, L. and Singh, A. (2016). Percolation by cumulative merging and phase transition for the contact process on random graphs. Ann. Sci. École Norm. Sup. 49, 11891238.CrossRefGoogle Scholar
Newman, M. E. J. (2018). Networks. Oxford University Press.CrossRefGoogle Scholar
Pastor-Satorras, R., Castellano, C., Van Mieghem, P. and Vespignani, A. (2015). Epidemic processes in complex networks. Rev. Modern Phys. 87, article no. 925.CrossRefGoogle Scholar
Pemantle, R. (1992). The contact process on trees. Ann. Prob. 20, 20892116.CrossRefGoogle Scholar