Skip to main content Accessibility help
×
Home

Extremes of multitype branching random walks: heaviest tail wins

  • Ayan Bhattacharya (a1), Krishanu Maulik (a2), Zbigniew Palmowski (a3) and Parthanil Roy (a4)

Abstract

We consider a branching random walk on a multitype (with Q types of particles), supercritical Galton–Watson tree which satisfies the Kesten–Stigum condition. We assume that the displacements associated with the particles of type Q have regularly varying tails of index $\alpha$ , while the other types of particles have lighter tails than the particles of type Q. In this paper we derive the weak limit of the sequence of point processes associated with the positions of the particles in the nth generation. We verify that the limiting point process is a randomly scaled scale-decorated Poisson point process using the tools developed by Bhattacharya, Hazra, and Roy (2018). As a consequence, we obtain the asymptotic distribution of the position of the rightmost particle in the nth generation.

Copyright

Corresponding author

*Postal address: Stochastics group, Centrum Wiskunde & Informatica, Amsterdam, North Holland, 1098 XG, Netherlands.
**Postal address: Statistics and Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
***Postal address: Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Ul. Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
****Postal address: Statistics and Mathematics Unit, Indian Statistical Institute, 8th Mile, Mysore Road, RVCE Post, Bangalore 560059, India.

References

Hide All
[1] Addario-Berry, L. and Reed, B. (2009). Minima in branching random walks. Ann. Prob. 37, 10441079.
[2] Adékon, E. (2013). Convergence in law of the minimum of a branching random walk. Ann. Prob. 41, 13621426.
[3] Adékon, E., Berestycki, J., Brunet, É. and Shi, Z. (2013). Branching Brownian motion seen from its tip. Prob. Theory Relat. Fields 157, 405451.
[4] Arguin, L.-P., Bovier, A. and Kistler, N. (2011). Genealogy of extremal particles of branching Brownian motion. Commun. Pure Appl. Math. 64, 16471676.
[5] Arguin, L.-P., Bovier, A. and Kistler, N. (2012). Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Prob. 22, 16931711.
[6] Arguin, L.-P., Bovier, A. and Kistler, N. (2013). The extremal process of branching Brownian motion. Prob. Theory Relat. Fields 157, 535574.
[7] Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover Publications, Mineola, NY.
[8] Bérard, J. and Maillard, P. (2014). The limiting process of N-particle branching random walk with polynomial tails. Electron. J. Prob. 19, 17pp.
[9] Bhattacharya, A., Hazra, R. S. and Roy, P. (2017). Point process convergence for branching random walks with regularly varying steps. Ann. Inst. H. Poincaré Prob. Statist. 53, 802818.
[10] Bhattacharya, A., Hazra, R. S. and Roy, P. (2018). Branching random walks, stable point processes and regular variation. Stoch. Process. Appl. 128, 182210.
[11] Biggins, J. D. (1976). The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Prob. 8, 446459.
[12] Biggins, J. D. and Rahimzadeh Sani, A. (2005). Convergence results on multitype, multivariate branching random walks. Adv. Appl. Prob. 37, 681705.
[13] Bramson, M. D. (1978). Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531581.
[14] Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves Mem. Amer. Math. Soc. 44, 190pp
[15] Bramson, M. and Zeitouni, O. (2012). Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 65, 120.
[16] Bramson, M., Ding, J. and Zeitouni, O. (2016). Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 69, 62123.
[17] Das, B., Mitra, A. and Resnick, S. (2013). Living on the multidimensional edge: seeking hidden risks using regular variation. Adv. Appl. Prob. 45, 139163.
[18] Davydov, Y., Molchanov, I. and Zuyev, S. (2008). Strictly stable distributions on convex cones. Electron. J. Prob. 13, 259321.
[19] Durrett, R. (1979). Maxima of branching random walks vs. independent random walks. Stoch. Process. Appl. 9, 117135.
[20] Durrett, R. (1983). Maxima of branching random walks. Z. Wahrscheinlichkeitsth. 62, 165170.
[21] Fasen, V. and Roy, P. (2016). Stable random fields, point processes and large deviations. Stoch. Process. Appl. 126, 832856.
[22] Gantert, N. (2000). The maximum of a branching random walk with semiexponential increments. Ann. Prob. 28, 12191229.
[23] Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Prob. 2, 652680.
[24] Hu, Y. and Shi, Z. (2009). Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Prob. 37, 742789.
[25] Hult, H. and Lindskog, F. (2006). Regular variation for measures on metric spaces. Publ. Inst. Math. (Beograd) (N.S.) 80 (94), 121140.
[26] Hult, H. and Samorodnitsky, G. (2010). Large deviations for point processes based on stationary sequences with heavy tails. J. Appl. Prob. 47, 140.
[27] Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd edn. Academic Press, New York-London.
[28] Kesten, H. and Stigum, B. P. (1966). A limit theorem for multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 12111223.
[29] Kingman, J. F. C. (1975). The first birth problem for an age-dependent branching process. Ann. Prob. 3, 790801.
[30] Kyprianou, A. E. (1999). A note on branching Lévy processes. Stoch. Process. Appl. 82, 114.
[31] Lalley, S. P. and Shao, Y. (2016). Maximal displacement of critical branching symmetric stable processes. Ann. Inst. H. Poincaré Prob. Stat. 52, 11611177.
[32] Lindskog, F., Resnick, S. I. and Roy, J. (2014). Regularly varying measures on metric spaces: hidden regular variation and hidden jumps. Prob. Surveys 11, 270314.
[33] Madaule, T. (2017). Convergence in law for the branching random walk seen from its tip. J. Theoret. Prob. 30, 2763.
[34] Maillard, P. (2016). The maximum of a tree-indexed random walk in the big jump domain. ALEA Latin Amer. J. Prob. Math. Statist. 13, 545561.
[35] Mode, C. J. (1971). Multitype Branching Processes. Theory and Applications (Modern Analytic Comput. Meth. Sci. Math. 34). American Elsevier Publishing, New York.
[36] Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes (Applied Probability. A Series of the Applied Probability Trust 4). Springer, New York.
[37] Resnick, S. I. and Roy, J. (2014). Hidden regular variation of moving average processes with heavy-tailed innovations. J. Appl. Prob. 51A, 267279.
[38] Subag, E. and Zeitouni, O. (2015). Freezing and decorated Poisson point processes. Commun. Math. Phys. 337, 5592.

Keywords

MSC classification

Extremes of multitype branching random walks: heaviest tail wins

  • Ayan Bhattacharya (a1), Krishanu Maulik (a2), Zbigniew Palmowski (a3) and Parthanil Roy (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed