Skip to main content Accessibility help
×
Home

Estimation of mean particle volume using the set covariance function

  • Annoesjka Cabo (a1) and Adrian Baddeley (a1)

Abstract

Our aim is to estimate the volume-weighted mean of the volumes of three-dimensional ‘particles’ (compact, not-necessarily-convex subsets) from plane sections of the particle population. The standard stereological technique is to place test lines in the plane section, and measure cubed intercept lengths with the two-dimensional particle profiles. This paper discusses more efficient estimators obtained by integrating over all possible placements of the test line. We prove that these estimators have smaller variance than the line transect estimators, and indeed are related to them by the Rao-Blackwell process. In the improved estimators, the cubed intercept length is replaced by a moment of the distance between two points in the section profile. This can be computed as a moment of the set covariance function, which in turn is computable using the fast Fourier transform. We also derive an isoperimetric-type inequality between the improved estimator and the area-weighted 3/2th moment of the profile areas. Finally, we present two practical applications to particles of silicon carbide and to synaptic boutons in brain tissue. We estimate the variance of the technique and the gain in efficiency over line transect techniques; the efficiency improvement appears to be as much as one order of magnitude.

Copyright

Corresponding author

Postal address: Nijendal 5, 3972 KC Driebergen, The Netherlands.
∗∗ Postal address: Department of Mathematics and Statistics, University of Western Australia, Nedlands WA 6009, Australia. Email address: adrian@maths.uwa.edu.au

References

Hide All
[1] Artachó-Pérula, E. and Roldán-Villalobos, R. (1994). Volume-weighted mean particle volume estimation using different measurement methods. J. Microscopy 173, 7378.
[2] Baddeley, A. J. and Cruz-Orive, L. M. (1995). The Rao–Blackwell theorem in stereology and some counterexamples. Adv. Appl. Prob. 27, 219.
[3] Baddeley, A. J., Gundersen, H. J. G. and Cruz-Orive, L. M. (1986). Estimation of surface area from vertical sections. J. Microscopy 142, 259276.
[4] Blaschke, W. (1949). Vorlesungen über Integralgeometrie. Chelsea, New York.
[5] Borel, E. (1925). Principes et Formules Classiques du Calcul des Probabilités. Gauthier-Villars, Paris.
[6] Braendgaard, H. and Gundersen, H. J. G. (1986). The impact of recent stereological advances on quantitative studies of the nervous system. J. Neurosci. Meth. 18, 3978.
[7] Brown, B. and Hettmansperger, T. (1996). Normal scores, normal plots and tests for normality. J. Amer. Statist. Assoc. 91, 16681675.
[8] Cabo, A. J. (1994). Set functionals in stochastic geometry. , Technical University of Delft.
[9] Cabo, A. J. and Baddeley, A. J. (1995). Line transects, covariance functions and set convergence. Adv. Appl. Prob. 27, 585605.
[10] Carleman, T. (1919). Ueber eine isoperimetrische Aufgabe und ihre physikalischen Anwendungen. Math. Z. 3, 17.
[11] Chia, J. L. C. (2002). Data models and estimation accuracy in stereology. , University of Western Australia.
[12] Crofton, M. W. (1885). Probability. In Encyclopaedia Britannica, Vol. 19, 9th edn, Stoddart, Philadelphia, PA, pp. 768788.
[13] D'Agostino, R. B., Belanger, A. and D'Agostino, R. B. Jr. (1990). A suggestion for using powerful and informative tests of normality. Amer. Statistician 44, 316321.
[14] Davy, P. J. and Miles, R. E. (1977). Sampling theory for opaque spatial specimens. J. R. Statis. Soc. B 39, 5665.
[15] Haas, A., Matheron, G. and Serra, J. (1967). Morphologie mathématique et granulométries en place. Ann. Mines 11, 736753.
[16] Haas, A., Matheron, G. and Serra, J. (1967). Morphologie mathématique et granulométries en place, II. Ann. Mines 12, 767782.
[17] Hadwiger, H. (1950). Neue Integralrelationen für Eikörperpare. Acta Sci. Math. (Szeged), 13, 252257.
[18] Jensen, E. B. and Gundersen, H. J. G. (1983). On the estimation of moments of the volume-weighted distribution of particle sizes. In Proc. Second Internat. Workshop Stereology Stoch. Geometry, Aarhus, eds Jensen, E. B. and Gundersen, H. J. G., University of Aarhus, Aarhus, pp. 81103.
[19] Jensen, E. B. and Gundersen, H. J. G. (1985). The stereological estimation of moments of particle volume. J. Appl. Prob. 22, 8298.
[20] Jensen, E. B. V. (1998). Local Stereology. World Scientific, Singapore.
[21] Matérn, B., (1960). Spatial variation. Meddelanden från Statens Skogsforskningsinstitut 49, No. 5. Second edition: Springer, Berlin, 1986.
[22] Mecke, J. (1967). Stationäre zufällige maße auf lokalkompakten abelschen gruppen. Z. Wahrscheinlichkeitsth. 9, 3658.
[23] Miles, R. E. (1979). Some new integral formulae, with stochastic applications. J. Appl. Prob. 16, 592606.
[24] Miles, R. E. (1983). Contributed discussion (session on Stochastic Geometry). Bull. Internat. Statist. Inst. 44, 392.
[25] Miles, R. E. (1983). Stereology for embedded aggregates of not-necessarily-convex particles. In Proc. Second Internat. Workshop Stereology Stoch. Geometry, Aarhus, eds Jensen, E. B. and Gundersen, H. J. G., Department of Theoretical Statistics, University of Aarhus, Aarhus, pp. 127147.
[26] Miles, R. E. (1985). A comprehensive set of stereological formulae for embedded aggregates of not-necessarily-convex particles. J. Microscopy 138, 115125.
[27] Santaló, L. A. (1976). Integral Geometry and Geometric Probability (Encyclopedia Math. Appl. 1). Addison-Wesley, Reading, MA.
[28] Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, London.
[29] Shapiro, S. S. and Francia, R. S. (1972). Approximate analysis of variance test for normality. J. Amer. Statist. Assoc. 67, 215216.
[30] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.

Keywords

MSC classification

Estimation of mean particle volume using the set covariance function

  • Annoesjka Cabo (a1) and Adrian Baddeley (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed