Article contents
Convergence results on multitype, multivariate branching random walks
Published online by Cambridge University Press: 01 July 2016
Abstract
We consider a multi-type branching random walk on d-dimensional Euclidian space. The~uniform convergence, as n goes to infinity, of a scaled version of the Laplace transform of the point process given by the nth generation particles of each type is obtained. Similar results in the one-type case, where the transform gives a martingale, were obtained in Biggins (1992) and Barral (2001). This uniform convergence of transforms is then used to obtain limit results for numbers in the underlying point processes. Supporting results, which are of interest in their own right, are obtained on (i) ‘Perron-Frobenius theory’ for matrices that are smooth functions of a variable λ∈L and are nonnegative when λ∈L−⊂L, where L is an open set in ℂd, and (ii) saddlepoint approximations of multivariate distributions. The saddlepoint approximations developed are strong enough to give a refined large deviation theorem of Chaganty and Sethuraman (1993) as a by-product.
Keywords
MSC classification
- Type
- General Applied Probability
- Information
- Copyright
- Copyright © Applied Probability Trust 2005
References
- 11
- Cited by