Bräker, H. and Hsing, T. (1998). On the area and perimeter of a random convex hull in a bounded convex set. Prob. Theory Relat. Fields
111, 517–550.

Cabo, A. J. and Groeneboom, P. (1994). Limit theorems for functionals of convex hulls. Prob. Theory Relat. Fields
100, 31–55.

Chayes, J. T., Chayes, L. and Kotecký, R. (1995). The analysis of the Widom–Rowlinson model by stochastic geometric methods. Commun. Math. Phys.
172, 551–569.

Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd edn.
Springer, New York.

Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Academic Press, Boston, MA.

Dupuis, P. and Ellis, R. S. (1997). A Weak Convergence Approach to the Theory of Large Deviations. John Wiley, Chichester.

Efron, B. (1965). The convex hull of a random set of points. Biometrika
52, 331–343.

Georgii, H.-O. (1988). Gibbs Measures and Phase Transitions. De Gruyter, Berlin.

Groeneboom, P. (1988). Limit theorems for convex hulls. Prob. Theory Relat. Fields
79, 327–368.

Hall, P. (1988). Introduction to the Theory of Coverage Processes. John Wiley, New York.

Hsing, T. (1994). On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Prob.
4, 478–493.

Hueter, I. (1999). Limit theorems for the convex hull of random points in higher dimensions. Trans. Amer. Math. Soc.
11, 4337–4363.

Kendall, W. S., Mecke, J. and Stoyan, D. (1995). Stochastic Geometry and Its Applications, 2nd edn.
John Wiley, Chichester.

Khamdamov, I. M. and Nagaev, A. V. (1991). Limiting distributions for functionals of the convex hull generated by uniformly distributed variables. Dokl. Akad. Nauk UzSSR
7, 8–9 (in Russian).

Küfer, K. H. (1994). On the approximation of a ball by random polytopes. Adv. Appl. Prob.
26, 876–892.

Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.

Molchanov, I. S. (1993). Limit Theorems for Unions of Random Closed Sets (Lecture Notes Math. 1561). Springer, Berlin.

Molchanov, I. S. (1995). On the convergence of random processes generated by polyhedral approximation of convex compacts. Theory Prob. Appl.
40, 383–390.

Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitsth.
2, 75–84.

Rényi, A. and Sulanke, R. (1964). Über die konvexe Hülle von n zufällig gewählten Punkten. II. Z. Wahrscheinlichkeitsth.
3, 138–147.

Schneider, R. (1988). Random approximation of convex sets. J. Microscopy
151, 211–227.

Schneider, R. (1993). Convex Bodies: The Brunn–Minkowski Theory (Encyclopaedia Math. Appl. 44). Cambridge University Press.

Schreiber, T. (2000). Large deviation principle for set-valued union processes. Prob. Math. Statist.
20, 273–285.

Schreiber, T. (2002a). Limit theorems for certain functionals of unions of random closed sets. Theory Prob. Appl.
47, 130–142.

Schreiber, T. (2002b). Variance asymptotics and central limit theorems for volumes of unions of random closed sets. Adv. Appl. Prob.
34, 520–539.

Schreiber, T. (2002c). A note on deviation probabilities for volumes of unions of random closed sets. Preprint 2/2002, Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń. Available at http://www.mat.uni.torun.pl/preprints/.
Van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York.