Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-27T12:14:16.504Z Has data issue: false hasContentIssue false

Error bounds for one-dimensional constrained Langevin approximations for nearly density-dependent Markov chains

Published online by Cambridge University Press:  26 July 2024

Felipe A. Campos*
Affiliation:
University of California, San Diego
Ruth J. Williams*
Affiliation:
University of California, San Diego
*
*Postal address: Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, USA.
**Email address: fcamposv91@gmail.com

Abstract

Continuous-time Markov chains are frequently used to model the stochastic dynamics of (bio)chemical reaction networks. However, except in very special cases, they cannot be analyzed exactly. Additionally, simulation can be computationally intensive. An approach to address these challenges is to consider a more tractable diffusion approximation. Leite and Williams (Ann. Appl. Prob. 29, 2019) proposed a reflected diffusion as an approximation for (bio)chemical reaction networks, which they called the constrained Langevin approximation (CLA) as it extends the usual Langevin approximation beyond the first time some chemical species becomes zero in number. Further explanation and examples of the CLA can be found in Anderson et al. (SIAM Multiscale Modeling Simul. 17, 2019).

In this paper, we extend the approximation of Leite and Williams to (nearly) density-dependent Markov chains, as a first step to obtaining error estimates for the CLA when the diffusion state space is one-dimensional, and we provide a bound for the error in a strong approximation. We discuss some applications for chemical reaction networks and epidemic models, and illustrate these with examples. Our method of proof is designed to generalize to higher dimensions, provided there is a Lipschitz Skorokhod map defining the reflected diffusion process. The existence of such a Lipschitz map is an open problem in dimensions more than one.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, R. P. and Lakshmikantham, V. (1993). Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. World Scientific, Singapore.CrossRefGoogle Scholar
Anderson, D., Higham, D., Leite, S. and Williams, R. J. (2019). Constrained Langevin equations and (bio)chemical reaction networks. SIAM Multiscale Modeling Simul. 17, 130.CrossRefGoogle Scholar
Anderson, D. and Kurtz, T. (2015). Stochastic Analysis of Biochemical Systems. Springer, Cham.CrossRefGoogle Scholar
Angius, A. et al. (2015). Approximate analysis of biological systems by hybrid switching jump diffusion. Theoret. Comput. Sci. 587, 4972.CrossRefGoogle Scholar
Anulova, S. V. and Liptser, B. S. (1990). Diffusional approximation for processes with the normal reflection. Theory Prob. Appl. 35, 411423.CrossRefGoogle Scholar
Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York.CrossRefGoogle Scholar
Bossy, M., Gobet, E. and Talay, D. (2004). A symmetrized Euler scheme for an efficient approximation of reflected diffusions. J. Appl. Prob. 41, 877889.CrossRefGoogle Scholar
Chung, K. L. and Williams, R. J. (1990). Introduction to Stochastic Integration, 2nd edn. Birkhäuser, Boston.CrossRefGoogle Scholar
Ethier, S. and Kurtz, T. (1986). Markov Processes: Characterization and Convergence. John Wiley, New York.CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus. Springer, New York.Google Scholar
Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent RV’-s, and the sample DF. I. Z. Wahrscheinlichkeitsth. 32, 111–131.CrossRefGoogle Scholar
Komlós, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrscheinlichkeitsth. 34, 33–58.CrossRefGoogle Scholar
Kruk, L., Lehoczky, J., Ramanan, K. and Shreve, S. (2007). An explicit formula for the Skorokhod map on [0, A]. Ann. Prob. 35, 1740–1768.CrossRefGoogle Scholar
Kurtz, T. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob. 7, 4958.CrossRefGoogle Scholar
Kurtz, T. (1971). Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8, 344356.CrossRefGoogle Scholar
Kurtz, T. (1976). Limit theorems and diffusion approximations for density dependent Markov chains. In Stochastic Systems: Modeling, Identification and Optimization, I, ed. R. J. B. Wets, Springer, Berlin, Heidelberg, pp. 67–78.CrossRefGoogle Scholar
Leite, S. and Williams, R. J. (2019). A constrained Langevin approximation for chemical reaction networks. Ann. Appl. Prob. 29, 15411608.CrossRefGoogle Scholar
Linetsky, V. (2005). On the transition densities for reflected diffusions. Adv. Appl. Prob. 37, 435460.CrossRefGoogle Scholar
Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Slominski, L. (1994). On approximation of solutions of multidimensional SDE’s with reflecting boundary conditions. Stoch. Process. Appl. 50, 197219.CrossRefGoogle Scholar
Skorokhod, A. V. (1961). Stochastic equations for diffusion processes in a bounded region. Theory Prob. Appl. 6, 264274.CrossRefGoogle Scholar
Tanaka, H. (1979). Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9, 163177.CrossRefGoogle Scholar
Yamada, T. (1976). On the uniqueness of solutions of stochastic differential equations with reflecting barrier conditions. In Séminaire de Probabilités X Université de Strasbourg, Springer, Berlin, Heidelberg, pp. 240244.CrossRefGoogle Scholar
Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155167.Google Scholar