Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-6klxd Total loading time: 0.321 Render date: 2021-04-22T17:20:12.773Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The asymptotic shape of the branching random walk

Published online by Cambridge University Press:  01 July 2016

J. D. Biggins
Affiliation:
University of Sheffield

Abstract

In a supercritical branching random walk on R p , a Galton–Watson process with the additional feature that people have positions, let be the set of positions of the nth-generation people, scaled by the factor n –1. It is shown that when the process survives looks like a convex set for large n. An analogous result is established for an age-dependent branching process in which people also have positions. In certain cases an explicit formula for the asymptotic shape is given.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1978 

Access options

Get access to the full version of this content by using one of the access options below.

References

Biggins, J. D. (1976) The first and last birth problems for a multitype age-dependent branching process. Adv. Appl. Prob. 8, 446459.CrossRefGoogle Scholar
Biggins, J. D. (1977a) Martingale convergence in the branching random walk. J. Appl. Prob. 14, 2537.CrossRefGoogle Scholar
Biggins, J. D. (1977b) Chernoff's Theorem in the branching random walk. J. Appl. Prob. 14,.Google Scholar
Brown, L. D. (1971) Admissible estimators, recurrent diffusions and insoluble boundary value problems. Ann. Math. Statist. 42, 855903.CrossRefGoogle Scholar
Daniels, H. E. (1977a) Contribution to the discussion of Mollison (1977).Google Scholar
Daniels, H. E. (1977b) The advancing wave in a spatial process. J. Appl. Prob. 14 (4)CrossRefGoogle Scholar
Hammersley, J. M. (1974) Postulates for subadditive processes. Ann. Prob. 2, 652680.CrossRefGoogle Scholar
Harris, T. E. (1963) The Theory of Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
Jagers, P. (1975) Branching Processes with Biological Applications. Wiley, London.Google Scholar
Kingman, J. F. C. (1975) The first birth problem for an age-dependent branching process. Ann. Prob. 12, 341345.Google Scholar
Mollison, D. (1977) Spatial contact models for ecological and epidemic spread. J. R. Statist. Soc. B 39,Google Scholar
Mollison, D. (1978) Markovian contact processes. Adv. Appl. Prob. 10,Google Scholar
Ney, P. E. (1965) The convergence of a random distribution function associated with a branching process. J. Math. Anal. Appl. 12, 316327.CrossRefGoogle Scholar
Renshaw, E. (1977) Contribution to the discussion of Mollison (1977).Google Scholar
Rockafellar, R. T. (1970) Convexity Analysis. Princeton University Press, Princeton, N.J. CrossRefGoogle Scholar
Rogers, C. A. (1970) Hausdorff Measures. Cambridge University Press.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 16 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The asymptotic shape of the branching random walk
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The asymptotic shape of the branching random walk
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The asymptotic shape of the branching random walk
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *