Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2016
  • Online publication date: June 2016

3 - Population genetics of wood ants

Summary

Discussions of queen dispersal and adoption of new queens by own versus alien colonies in Formica rufa played an important role in the early theoretical studies of social evolution (Sturtevant 1938; Williams and Williams 1957). This was inspired by polygyny affecting the genetic relationships among nestmates, which are estimated today by use of genetic markers (Box 3.1). Demography and population dynamics also shape the whole genetic landscape of ant populations, and genetic studies can be used to trace such events. Finally, even long-term processes leave their genetic signatures, and the genome-wide variation patterns support the hypothesis that ants tend to have small effective population sizes and increased genetic loads, resembling vertebrates more than other invertebrates in this respect (Romiguier et al. 2014). Even though this conclusion is general and based only on very few species, it emphasises biological characteristics important for ant populations also in the context of conservation.

Molecular markers

Genetic markers are used to estimate the level and distribution of genetic variation in populations and societies. Optimal genetic markers are: (1) not influenced by environment or developmental stages, (2) randomly distributed across the genome, (3) codominant and (4) selectively neutral, but none of the markers in use fulfil all these requirements (Lowe et al. 2004). Genetic markers are used to resolve phylogenetic relationships at different hierarchical levels: among species, among conspecific populations at large geographic scales, among potentially interconnected conspecific populations and among individuals (Avise 2004). In social insects, studies at the first two levels are not different from other organisms: spatial distribution of genetic variability is first assessed and then interpreted based on geological and climatological history. On the other hand, analyses of colony kin structure and spatial population structure are, at least to some extent, idiosyncratic to social insects and need a more detailed introduction (Box 3.2).

Marker types

In the 1960s, the first molecular polymorphisms employed as genetic markers were enzymes, widely used because of low costs and the ease of use. Allozyme polymorphism is based on the variation in the net charge of enzymes involved in basic metabolism. As only a small fraction of mutations (9%) lead to a change in the net charge of the amino acid chain, allozymes tend to be only weakly polymorphic.

Avise, J. C. (2004) Molecular Markers, Natural History, and Evolution, 2nd edition. Sunderland, MA: Sinauer.
Bargum, K. and Sundström, L. (2007) Multiple breeders, breeder shifts and inclusive fitness returns in an ant. Proceedings of the Royal Society B 274: 1547–1551.
Berg, L. M., Lascoux, M. and Pamilo, P. (1998) The infinite island model with sex-differentiated gene flow. Heredity 81: 63–68.
Bernasconi, C., Maeder, A., Cherix, D. and Pamilo, P. (2005) Diversity and genetic structure of the wood ant Formica lugubris in unmanaged forests. Annales Zoologici Fennici 42: 189–199.
Bernasconi, C., Pamilo, P. and Cherix, D. (2010) Molecular markers allow sibling species identification in red wood ants (Formica rufa group). Systematic Entomology 35: 243–249.
Bernasconi, C., Cherix, D., Seifert, B. and Pamilo, P. (2011) Molecular taxonomy of the Formica rufa group (red wood ants) (Hymenoptera: Formicidae): a new cryptic species in the Swiss Alps?Myrmecological News 14: 37–47.
Beye, M., Neumann, P., Chapuisat, M., Pamilo, P. and Moritz, R. F. A. (1998) Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behavioral Ecology and Sociobiology 43: 67–72.
Boomsma, J. J. and Grafen, A. (1990) Intraspecific variation in ant sex ratios and the Trivers–Hare hypothesis. Evolution 44: 1026–1034.
Chapuisat, M. (1996) Characterization of microsatellite loci in Formica lugubris B and their variability in other ant species. Molecular Ecology 5: 599–601.
Chapuisat, M. (1998) Mating frequency of ant queens with alternative dispersal strategies, as revealed by microsatellite analysis of sperm. Molecular Ecology 7: 1097–1105.
Chapuisat, M. and Keller, L. (1999) Extended family structure in the ant Formica paralugubris: the role of the breeding system. Behavioral Ecology and Sociobiology 46: 405–412.
Chapuisat, M., Goudet, J. and Keller, L. (1997) Microsatellites reveal high population viscosity and limited dispersal in the ant Formica paralugubris. Evolution 51: 475–482.
Corander, J., Waldmann, P., Marttinen, P. and Sillanpää, M. (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20: 2363–2369.
Crozier, R.H. and Pamilo, P. (1996) Evolution of Social Insect Colonies. Sex Allocation and Kin Selection. Oxford, UK: Oxford University Press.
Czechowski, W. (1993) Hybrids in red wood ants. Annales Zoologici 44: 43–53.
Czechowski, W. and Douwes, P. (1996) Morphometric characteristics of Formica polyctena Foerst. and Formica rufa L. (Hymenoptera, Formicidae) from the Gorce Mts; interspecific and intraspecific variations. Annales Zoologici 46: 125–141.
Czechowski, W. and Radchenko, A. (2006) Do permanently mixed colonies of wood ants (Hymenoptera: Formicidae) really exist?Annales Zoologici 56: 667–673.
Debout, G., Schatz, B., Elias, M. and Mckey, D. (2007) Polydomy in ants: what we know, what we think we know, and what remains to be done. 2007. Biological Journal of the Linnean Society 90: 319–348
Elias, M., Rosengren, R. and Sundström, L. (2005) Seasonal polydomy and unicoloniality in a polygynous population of the red wood ant Formica truncorum. Behavioral Ecology and Sociobiology 57: 339–349.
Ellis, S. and Robinson, E. J. H. (2014) Polydomy in red wood ants. Insectes Sociaux 61: 111–122.
Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.
Fernández-Escudero, I., Pamilo, P. and Seppä, P. (2002) Biased sperm use by polyandrous queens of the ant Proformica longiseta. Behavioral Ecology and Sociobiology 51: 207–213.
Goropashnaya, A. (2003) Phylogeographic structure and genetic variation in Formica ants. Ph.D. dissertation, Uppsala University, Sweden.
Goropashnaya, A.V., Fedorov, V.B. and Pamilo, P. (2004a) Recent speciation in the Formica rufa group ants (Hymenoptera, Formicidae): inference from mitochondrial DNA phylogeny. Molecular Phylogenetics and Evolution 32: 198–206.
Goropashnaya, A.V., Fedorov, V. B., Seifert, B. and Pamilo, P. (2004b) Limited phylogeographic structure across Eurasia in two red wood ant species Formica pratensis and F. lugubris (Hymenoptera, Formicidae). Molecular Ecology 13: 1849–1858.
Goropashnaya, A. V., Fedorov, V. B., Seifert, B. and Pamilo, P. (2012) Phylogenetic relationships of palaearctic Formica species (Hymenoptera, Formicidae) based on mitochondrial cytochrome b Sequences. PLoS One 7: 7 (e41697).
Gösswald, K., Kneitz, G. and Schirmer, G. (1965) Die geographische Verbreitung der hügelbauenden Formica-Arten (Hym., Formicidae) in Europa. Zoologische Jahrbücher Systematik 92: 369–404.
Guillot, G., Leblois, R., Coulon, A. and Frantz, A. C. (2009) Statistical methods in spatial genetics. Molecular Ecology 18: 4734–4756.
Gyllenstrand, N. and Seppä, P. (2003) Conservation genetics of the ant, Formica lugubris, in a fragmented landscape. Molecular Ecology 12: 2931–2940.
Gyllenstrand, N., Gertsch, P. J. and Pamilo, P. (2002) Polymorphic microsatellite DNA markers in the ant Formica exsecta. Molecular Ecology Notes 2: 67–69.
Gyllenstrand, N., Seppä, P. and Pamilo, P. (2004) Genetic differentiation in sympatric wood ants, Formica rufa and F. polyctena. Insectes Sociaux 51: 139–145.
Gyllenstrand, N., Seppä, P. and Pamilo, P. (2005) Restricted gene flow between two social forms in the ant Formica truncorum. Journal of Evolutionary Biology 18: 978–984.
Haapaniemi, K. and Pamilo, P. (2012) Reproductive conflicts in polyandrous and polygynous ant Formica sanguinea. Molecular Ecology 21: 421–430.
Hale, M. L., Burg, T. M. and Steeves, T. E. (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One 7: 9, e45170.
Hamilton, W.D. (1964) The genetical evolution of social behavior I. Journal of Theoretical Biology 7: 1–16.
Hannonen, M., Helanterä, H. and Sundström, L. (2004) Habitat age, breeding system and kinship in the ant Formica fusca. Molecular Ecology 13: 1579–1588.
Hasegawa, E. and Imai, S. (2004) Characterization of microsatellite loci in red wood ants Formica (s. str.) spp. and the related genus Polyergus. Molecular Ecology Notes 4: 200–203.
Helanterä, H. and Sundström, L. (2007) Worker reproduction in Formica ants. American Naturalist 170: E14–E25.
Helanterä, H., Strassmann, J. E., Carillo, J. and Queller, D. C. (2009) Unicolonial ants: where do they come from, what are they and where are they going. Trends in Ecology and Evolution 24: 342–349.
Higashi, S. (1976) Nest proliferation by budding and nest growth pattern in Formica (Formica) yessensis in Ishikari Shore. Journal of the Faculty of Science, Hokkaido University, Series 6, Zoology 20: 359–389.
Hölldobler, B. and Wilson, E.O. (1990) The Ants. Cambridge, MA: The Belknap Press of Harvard University Press.
Holzer, B., Chapuisat, M., Kremer, N., Finet, C. and Keller, L. (2006) Unicoloniality, recognition and genetic differentiation in a native Formica ant. Journal of Evolutionary Biology 19: 2031–2039.
Holzer, B.Meunier, J., Keller, L. and Chapuisat, M. (2008) Stay or drift? Queen acceptance in the ant Formica paralugubris. Insectes Sociaux 55: 392–396.
Holzer, B., Keller, L. and Chapuisat, M. (2009) Genetic clusters and sex biased gene flow in a unicolonial Formica ant. BMC Evolutionary Biology 9: 69.
Kennedy, P., Uller, T., Helanterä, H. (2014) Are ant supercolonies crucibles of a new major transition in evolution?Journal of Evolutionary Biology 27: 784–796.
Kidokoro-Kobayashi, M., Iwakura, M., Fujiwara-Tsujii, N., et al. (2012) Chemical discrimination and aggressiveness via cuticular hydrocarbons in a supercolony-forming ant, Formica yessensis. PLoS One 7: e46840
Korczyska, J., Gajewska, M., Pilot, M., Czechowski, W. and Radchenko, A. (2010) Genetic polymorphism in ‘mixed’ colonies of wood ants (Hymenoptera: Formicidae) in southern Finland and its possible origin. European Journal of Entomology 107: 157–167.
Kulmuni, J. and Pamilo, P. (2014) Introgression in hybrid ants is favored in females but selected against in males. Proceedings of the National Academy of Science USA 111: 12805–12810.
Kulmuni, J., Seifert, B. and Pamilo, P. (2010) Segregation distortion causes large-scale differences between male and female genomes in hybrid ants. Proceedings of the National Academy of Science USA 107: 7371–7376.
Kümmerli, R. and Keller, L. (2007) Extreme reproductive specialization within ant colonies: some queens produce males whereas others produce workers. Animal Behavior 74: 1535–1543.
Lowe, A., Harris, S. and Ashton, P. (2004) Ecological Genetics. Design, Analysis and Application. Oxford, UK: Blackwell Publishing.
McIver, J. D., Torgelsen, T. R. and Cimon, N. J. (1997) A supercolony of the thatch ant Formica obscuripes Forel (Hymenoptera: Formicidae) from the Blue Mountains of Oregon. Northwest Science 71: 18–29.
Mäki-Petäys, H. and Breen, J. (2007) Genetic vulnerability of a remnant ant population. Conservation Genetics 8: 427–435.
Mäki-Petäys, H., Zakharov, A., Viljakainen, L., Corander, J. and Pamilo, P. (2005) Genetic changes associated to declining populations of Formica ants in fragmented forest landscape. Molecular Ecology 14: 733–742.
Pamilo, P. (1982) Genetic population structure in polygynous Formica ants. Heredity 48: 95–106.
Pamilo, P. (1984) Genotypic correlation and regression in social groups: multiple alleles, multiple loci and subdivided populations. Genetics 107: 307–320.
Pamilo, P. (1985) Effect of inbreeding on genetic relatedness. Hereditas 103: 195–200.
Pamilo, P. (1987) Population genetics of the Formica rufa group. In Eder, M J., and Rembold, H. (eds), Chemistry and Biology of Social Insects. Munich: Verlag J. Peperny, pp. 68–70.
Pamilo, P. (1993) Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70: 472–480.
Pamilo, P. and Rosengren, R. (1983) Sex ratio strategies in Formica ants. Oikos 40: 24–35.
Pamilo, P. and Rosengren, R. (1984) Evolution of nesting strategies of ants: genetic evidence from different population types of Formica ants. Biological Journal of the Linnaean Society 21: 331–348.
Pamilo, P., Chautems, D. and Cherix, D. (1992) Genetic differentiation of disjunct populations of the ants Formica aquilonia and Formica lugubris in Europe. Insectes Sociaux 39: 15–29.
Pamilo, P., Sundström, L., Fortelius, W. and Rosengren, R. (1994) Diploid males and colony-level selection in Formica ants. Ethology Ecology and Evolution 6: 221–235.
Pamilo, P, Zhu, D., Fortelius, W., Rosengren, R., Seppä, P. and Sundström, L. (2005) Genetic patchwork of network-building wood ant populations. Annales Zoologici Fennici 42: 179–187.
Papadopoulou, A., Anastasiou, A. and Vogler, A. P. (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution 27: 1659–1672.
Pirk, C. W. W., Neumann, P., Moritz, R. F. A. and Pamilo, P. (2001) Intranest relatedness and nestmate recognition in the meadow ant Formica pratensis (R.). Behavioral Ecology and Sociobiology 49: 366–374.
Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
Queller, D.C. (1993) Genetic relatedness and its components in polygynous colonies of social insects. In Keller, L. (ed.), Queen Number and Sociality in Insects. Oxford, UK: Oxford University Press, pp. 132–152.
Queller, D. C., Strassmann, J. E. and Hughes, C. R. (1993) Microsatellites and kinship. Trends in Ecology and Evolution 8: 285–288.
Romiguier, J., Lourenco, J., Gayral, P., et al. (2014) Population genomics of eusocial insects: the costs of a vertebrate-like effective population size. Journal of Evolutionary Biology 27: 593–603.
Rosengren, R. (1969) Notes regarding the growth of a polycalic nest system in Formica uralensis Ruzsky. Notulae Entomologicae 49: 1–230.
Rosengren, R. and Pamilo, P. (1983) The evolution of polygyny and polydomy in mound building Formica ants. Acta Entomologica Fennica 42: 65–77.
Rosengren, R., Sundström, L. and Fortelius, W. (1993) Monogyny and polygyny in Formica ants: the result of alternative dispersal tactics. In Keller, L. (ed), Queen Number and Sociality in Insects. Oxford, UK: Oxford University Press, pp. 308–333.
Ross, K.G. (1993) The breeding system of the fire ant Solenopsis invicta: effects on colony genetic structure. American Naturalist 141: 554–576.
Ross, K. G., Vargo, E. L. and Keller, L. (1996) Social evolution in a new environment: the case of introduced fire ants. Proceedings of the National Academy of Science USA 93: 3021–3025.
Savolainen, R. and Vepsäläinen, K. (1988) A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos 51: 135–155.
Savolainen, R., Vepsäläinen, K. and Wuorenrinne, H. (1989) Ant assemblages in the taiga biome: testing the role of territorial wood ants. Oecologia 81: 481–486.
Schultner, E. (2014) Cannibalism and conflict in Formica ants. PhD thesis, University of Helsinki, Finland.
Seifert, B. (1991) The phenotypes of the Formica rufa complex in East Germany. Abhandlungen und Berichte des Naturkundemuseums Görlitz 65: 1–27.
Seifert, B. (1996) Formica paralugubris nov. spec.: a sympatric sibling species of Formica lugubris from the westen Alps (Insecta: Hymenoptera: Formicoidea: Formicidae). Reichenbachia 31: 193–201.
Seifert, B. (2003) The ‘Hippie Ant’: a case of extreme intranidal polymorphism in Fennoscandian Formica lugubris Zetterstedt 1838 (Hymenoptera:Formicidae). Sociobiology 42: 285–297.
Seifert, B. (2007) Die Ameisen Mittel- und Nordeuropas. Tauer, Germany: Lutra Verlags und Vertriebsgesellshaft.
Seifert, B. (2010) Intranidal mating, gyne polymorphism, polygyny, and supercoloniality as factors for sympatric and parapatric speciation in ants. Ecological Entomology 35: 33–40.
Seifert, B. and Goropashnaya, A. (2004) Ideal phenotypes and mismatching haplotypes: errors of mtDNA treeing in ants (Hymenoptera: Formicidae) detected by standardized morphometry. Organisms Diversity and Evolution 4: 295–305.
Seifert, B., Kulmuni, J. and Pamilo, P. (2010) Independent hybrid populations of Formica polyctena × rufa wood ants (Hymenoptera: Formicidae) abound under conditions of forest fragmentation. Evolutionary Ecology 24: 1219–1237.
Seppä, P. (1994) Sociogenetic organization of Myrmica ruginodis and Myrmica lobicornis (Hymenoptera: Formicidae) colonies and populations: number, relatedness and longevity of reproducing individuals. Journal of Evolutionary Biology 7: 71–95.
Seppä, P. (2008) Do ants (Hymenoptera: Formicidae) need conservation and does ant conservation need genetics?Myrmecological News 11: 161–172.
Seppä, P. and Pamilo, P. (1995) Gene flow and population viscosity in Myrmica ants. Heredity 74: 200–209.
Seppä, P., Gyllenstrand, N., Corander, J. and Pamilo, P. (2004) Coexistence of the social types: genetic population structure in the ant Formica exsecta. Evolution 58: 2462–2471.
Sorvari, J. (2006) Two distinct morphs in the wood ant Formica polyctena in Finland: a result of hybridization?Entomologica Fennica 17: 1–17.
Sturtevant, A. H. (1938) Essays on evolution II. On the effects of selection on social insects. Quarterly Review of Biology 13: 74–76.
Sundström, L. (1993) Genetic population structure and sociogenetic organization in Formica truncorum (Hymenoptera, Formicidae). Behavioral Ecology and Sociobiology 33: 345–354.
Sundström, L. (1994) Sex ratio bias, relatedness asymmetry and queen mating frequency in ants. Nature 367: 266–268.
Sundström, L. (1995) Dispersal polymorphism and physiological condition of males and females in the ant Formica truncorum. Behavioral Ecology 6: 132–139.
Sundström, L. (1997) Queen acceptance and nestmate recognition in monogyne and polygyne colonies of the ant Formica truncorum. Animal Behaviour 53: 499–510.
Sundström, L., Chapuisat, M. and Keller, L. (1996) Conditional manipulation of sex ratios by ant workers: a test of kin selection theory. Science 274: 993–995.
Sundström, L., Seppä, P. and Pamilo, P. (2005) Genetic population structure and dispersal patterns in Formica ants: a review. Annales Zoologici Fennici 42: 163–177
Thomas, M. L., Payne-Makrisâ, C. M., Suarez, A. V., Tsutsui, N. D. and Holway, D.A. (2006) When supercolonies collide: territorial aggression in an invasive and unicolonial social insect. Molecular Ecology 15: 4303–4315.
Vanhala, T., Watts, K., A'Hara, S. and Cottrell, J. (2014) Population genetics of Formica aquilonia wood ants in Scotland: the effects of long-term forest fragmentation and recent reforestation. Conservation Genetics 15: 853–868.
Vepsäläinen, K. and Pisarski, B. (1981) The taxonomy of the Formica rufa group: chaos before order. In Howse, P. E. and Clément, J.-L. (eds), Biosystematics of Social Insects. London: Academic Press, pp. 27–35.
Viljakainen, L., Reuter, M. and Pamilo, P. (2008) Wolbachia transmission dynamics in Formica wood ants. BMC Evolutionary Biology 8: 55
Wang, J. (2014) Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current methods. Journal of Evolutionary Biology 27: 518–530.
Welch, R. C. (1978) Changes in the distribution of the nests of Formica rufa L. (Hymenoptera: Formicidae) at Blean Woods National Nature Reserve, Kent, during the decade following coppicing. Insectes Sociaux 25: 173–186.
Williams, G. C. and Williams, D. C. (1957) Natural selection of individually harmful social adaptations among sibs with special reference to social insects. Evolution 11: 32–39.
Wilson, E.O. (1971) The Insect Societies. Cambridge, MA: Harvard University Press.
Wright, S. (1931) Evolution in Mendelian populations. Genetics 16: 97–159.
Wright, S. (1943) Isolation by distance. Genetics 28: 114–138.
Zayed, A. and Packer, L. (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proceedings of the National Academy of Sciences of the USA 102: 10742–10746.