Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-13T23:24:42.019Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 February 2010

Leo H. Holthuijsen
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aage, C., Allen, T. D., Carter, D. J. T., Lindgren, G. and Olagnon, M., 1998, Oceans from Space, Plouzané, Édition Ifremer, 162 pp.Google Scholar
Abbott, M. B., Peterson, M. H. and Skovgaard, O., 1978, On the numerical modelling of short waves in shallow water, J. Hydraul. Res., IAHR, 16, 3, 173–204CrossRefGoogle Scholar
Abbott, M. B. and Basco, D. R., 1989, Computational Fluid Dynamics, New York, John Wiley & Sons, Inc., 425 pp.Google Scholar
Abramowitz, M. and Stegun, I. A. (eds.), 1965, Handbook of Mathematical Functions, New York, Dover Publications, Inc., 1043 pp.Google Scholar
Abreu, M., Larraza, A. and Thornton, E., 1992, Nonlinear transformations of directional wave spectra in shallow water, J. Geophys. Res., 97, C10, 15 579–15 589CrossRefGoogle Scholar
Agnon, Y., Sheremet, A., Gonsalves, J. and Stiassnie, M., 1993, Nonlinear evolution of a unidirectional shoaling wave field, Coastal Engineering, 20, 29–58CrossRefGoogle Scholar
Agnon, Y. and Sheremet, A., 1997, Stochastic nonlinear shoaling of directional spectra, J. Fluid Mech., 345, 79–99CrossRefGoogle Scholar
Ahn, K., 2000, Statistical distribution of wave heights in finite water depth, Proc. 27th Int. Conf. Coastal Engineering (Sydney), Reston, VA, ASCE, pp. 533–544>
Airy, G. B., 1845, Tides and waves, Encyclopaedia Metropolitana, London, Scientific Department, pp. 241–396Google Scholar
Allender, J., Audunson, T., Barstow, S. F., Bjerken, S., Krogstad, H. E., Steinbakke, P., Vartdal, L., Borgman, L. E. and Graham, C., 1989, The WADIC project; a comprehensive field evaluation of directional wave instrumentation, Ocean Engineering, 16, 5/6, 505–536CrossRefGoogle Scholar
Allsop, N. W. H. and Hettiarachchi, S. S. L., 1988, Reflections from coastal structures, Proc. 21st Int. Conf. Coastal Engineering (Malaga), New York, ASCE, pp. 782–794Google Scholar
Alpers, W. R, Ross, D. B. and Rufenach, C. L., 1981, On the detectability of ocean surface waves by real and synthetic aperture radar, J. Geophys. Res., 86, C7, 6481–6498CrossRefGoogle Scholar
Alves, J. H. G. M. and Banner, M. L., 2003, Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves, J. Phys. Oceanogr., 33, 6, 1274–12982.0.CO;2>CrossRefGoogle Scholar
Alves, J. H. G. M., Banner, M. L. and Young, I. R., 2003, Revisiting the Pierson—Moskowitz asymptotic limits for fully developed wind waves, J. Phys. Oceanogr., 33, 6, 1301–13232.0.CO;2>CrossRefGoogle Scholar
Apel, J. R., 1994, An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter, J. Geophys. Res., 99, C8, 16 269–16 291CrossRefGoogle Scholar
Arcilla, A. S. and Lemos, C. M., 1990, Surf-Zone Hydrodynamics, Barcelona, Centro Internacional de Métodos Numéricos en Ingenieria, 310 pp.Google Scholar
Ardhuin, F., Herbers, T. H. C. and O'Reilly, W. C., 2001, A hybrid Eulerian-Lagrangian model for spectral wave evolution with application to bottom friction on the continental shelf, J. Phys. Oceanogr., 31, 6, 1498–15162.0.CO;2>CrossRefGoogle Scholar
Ardhuin, F. and Herbers, T. H. C., 2002, Bragg scattering of random surface gravity waves by irregular seabed topography, J. Fluid Mech., 451, 1–33CrossRefGoogle Scholar
Arhan, M. and Ezraty, R., 1978, Statistical relations between successive wave heights, Oceanol. Acta, 1, 151–158Google Scholar
Aris, R., 1962, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Englewood Cliffs, NJ, Prentice-Hall, Inc., 286 pp. (reprinted New York, Dover Publications, Inc., 1989)Google Scholar
Arthur, R. S., Munk, W. H. and Isaacs, J. D., 1952, The direct construction of wave rays, Trans. Am. Geophys. Union., 33, 855–865CrossRefGoogle Scholar
Atkins, J. E., 1977, Special reports on freak waves, The Marine Observer, January 1977, 32–35Google Scholar
Babanin, A. V., Young, I. R. and Banner, M. L., 2001, Breaking probabilities for dominant surface waves on water of finite depth, J. Geophys. Res., 106, C6, 11 659–11 676CrossRefGoogle Scholar
Baldock, T. E., Holmes, P., Bunker, S. and Weert, P., 1998, Cross-shore hydrodynamics within an unsaturated surf zone, Coastal Engineering, 34, 173–196CrossRefGoogle Scholar
Banner, M. L. and Melville, W. K., 1976, On the separation of air flow over water waves, J. Fluid Mech., 77, 4, 825–842CrossRefGoogle Scholar
Banner, M. L., Jones, I. S. F. and Trinder, J. C., 1989, Wavenumber spectra of short gravity waves, J. Fluid Mech., 198, 321–344CrossRefGoogle Scholar
Banner, M. L., 1990a, Equilibrium spectra of wind-waves, J. Phys. Oceanogr., 20, 7, 966–9842.0.CO;2>CrossRefGoogle Scholar
Banner, M. L. 1990b, The influence of wave breaking on the surface pressure distribution in wind-wave interactions, J. Fluid Mech., 211, 463–495CrossRefGoogle Scholar
Banner, M. L. and Grimshaw, R. H. J. (eds.), 1991, Breaking Waves, Berlin, International Union of Theoretical and Applied Mechanics and Springer-Verlag, 387 pp.Google Scholar
Banner, M. L. and Young, I. R., 1994, Modelling spectral dissipation in the evolution of wind waves. Part I: assessment of existing model performance, J. Phys. Oceanogr., 24, 7, 1550–15712.0.CO;2>CrossRefGoogle Scholar
Banner, M. L., Babanin, A. V. and Young, I. R., 2000, Breaking probability for dominant waves on the sea surface, J. Phys. Oceanogr., 30, 12, 3145–31602.0.CO;2>CrossRefGoogle Scholar
Barber, N. F. and Ursell, F., 1948, The generation and propagation of ocean waves and swell: part I, wave periods and velocities, Phil. Trans. Roy. Soc. London, A, 240, 527–560CrossRefGoogle Scholar
Barber, N. F., 1969, Water Waves, London, Wykeham Publications, 142 pp.Google Scholar
Barnett, T. P., 1968, On the generation, dissipation and prediction of ocean wind waves, J. Geophys. Res., 73, 2, 513–529CrossRefGoogle Scholar
Barrick, D. E., 1968, Rough surface scattering based on the specular point theory, IEEE Trans. Antennas Propagat., AP-14, 4, 449–454CrossRefGoogle Scholar
Barstow, S. F., 1996, World Wave Atlas, AVISO Altimeter Newsletter, 4, 24–25Google Scholar
Battjes, J. A., 1968, Refraction of water waves, J. Waterways and Harbors Div., New York, ASCE, WW4, 437–451Google Scholar
Battjes, J. A. 1972a, Long-term wave height distributions at seven stations around the British Isles, Deutsch. Hydrogr. Z., 25, 4, 179–189CrossRefGoogle Scholar
Battjes, J. A. 1972b, Radiation stresses in short-crested waves, J. Mar. Res., 30, 1, 56–64Google Scholar
Battjes, J. A. 1972c, Set-up due to irregular waves, Proc. 13thConf. Coastal Engineering (Vancouver), New York, ASCE, pp. 1993–2004
Battjes, J. A. 1974a, Computations of set-up, longshore currents, run-up and overtopping due to wind-generated waves, Ph.D. thesis, published as Communications on Hydraulics, Delft University of Technology, Dept. of Civil Engineering, Report No. 74--2, 244 pp
Battjes, J. A. 1974b, Surf similarity, Proc. 14thConf. Coastal Engineering (Copenhagen), New York, ASCE, pp. 466–480
Battjes, J. A. and Janssen, J. P. F. M., 1978, Energy loss and set-up due to breaking of random waves, Proc. 16th Conf. Coastal Engineering (Hamburg), New York, ASCE, pp. 569–587Google Scholar
Battjes, J. A., 1984, A review of methods to establish the wave climate for breakwater design, Coastal Engineering, 8, 141–160CrossRefGoogle Scholar
Battjes, J. A. and Ph., G. Vledder, 1984, Verification of Kimura's theory for wave group statistics, Proc. 19th Int. Conf. Coastal Engineering (Houston), New York, ASCE, pp. 642–648Google Scholar
Battjes, J. A. and Stive, M. J. F., 1985, Calibration and verification of a dissipation model for random breaking waves, J. Geophys. Res., 90, C5, 9159–9167CrossRefGoogle Scholar
Battjes, J. A., Zitman, T. F. and Holthuijsen, L. H., 1987, A reanalysis of the spectra observed in JONSWAP, J. Phys. Oceanogr., 17, 8, 1288–12952.0.CO;2>CrossRefGoogle Scholar
Battjes., J. A., 1988, Surf-zone dynamics, Ann. Rev. Fluid Mech., 20, 257–293CrossRefGoogle Scholar
Battjes, J. A. and Beji, S., 1992, Breaking waves propagating over a shoal, Proc. 23rd Int. Conf. Coastal Engineering (Venice), New York, ASCE, pp. 42–50Google Scholar
Battjes, J. A., Eldeberky, Y. and Won, Y., 1993, Spectral Boussinesq modelling of breaking waves, Proc. 2ndInt. Symp. on Ocean Wave Measurement and Analysis WAVES 93 (New Orleans), New York, ASCE, pp. 813–820Google Scholar
Battjes, J. A., 1994, Shallow water wave modelling, Proc. Int. Symp.: Waves — Physical and Numerical Modeling, eds. Isaacson, M. and Quick, M., Vancouver, University of British Columbia, I, pp. 1–23Google Scholar
Battjes, J. A. and Groenendijk, H. W., 2000, Wave height distributions on shallow foreshores, Coastal Engineering, 40, 3, 161–182CrossRefGoogle Scholar
Bauer, E. and Staabs, C., 1998, Statistical properties of global significant wave heights and their use for validation, J. Geophys. Res., 103, C1, 1153–1166CrossRefGoogle Scholar
Becq, F., Benoit, M. and Ph., Forget, 1998, Numerical simulations of directionally spread shoaling surface gravity waves, Proc. 26thInt. Conf. Coastal Engineering (Copenhagen), Reston, VA, ASCE, pp. 523–536Google Scholar
Becq-Girard, F., Forget, P. and Benoit, M., 1999, Nonlinear propagation of unidirectional wave fields over varying topography, Coastal Engineering, 38, 2, 91–113CrossRefGoogle Scholar
Beji, S. and Battjes, J. A., 1993, Experimental investigation of wave propagation over a bar, Coastal Engineering, 19, 1–2, 151–162CrossRefGoogle Scholar
Beji, S. and Nadaoka, K., 1997, A time-dependent nonlinear mild-slope equation for water waves, Proc. Roy. Soc. London A, 453, 319–332CrossRefGoogle Scholar
Belcher, S. E., Harris, J. A. and Street, R. L., 1994, Linear dynamics of wind waves in coupled turbulent air-water flow. Part 1. Theory, J. Fluid Mech., 271, 119–151CrossRefGoogle Scholar
Bendat, J. S. and Piersol, A. G., 1971, Random Data: Analysis and Measurement Procedures, New York, Wiley-Interscience, 407 pp.Google Scholar
Bender, L. C., 1996, Modification of the physics and numerics in a third-generation ocean wave model, J. Atm. Ocean. Technol., 13, 3, 726–7502.0.CO;2>CrossRefGoogle Scholar
Benoit, M., Marcos, F. and Becq, F., 1996, Development of a third generation shallow-water wave model with unstructured spatial meshing, Proc. 25th Int. Conf. Coastal Engineering (Orlando), New York, ASCE, pp. 465–478Google Scholar
Benoit, M., Frigaard, P. and Schaffer, H. A., 1997, Analyzing multidirectional wave spectra: a tentative classification of available methods, Proc. Seminar on Multidirectional Waves and their Interaction with Structures, San Francisco, CA, Baltimore, The Johns Hopkins University Press, IAHR, pp. 131–158Google Scholar
Berkhoff, J. C. W., 1972, Computations of combined refraction-diffraction, Proc. 13thConf. Coastal Engineering (Vancouver), New York, ASCE, pp. 471–490Google Scholar
Bertotti, L and Cavaleri, L., 1985, Coastal set-up and wave breaking, Oceanol. Acta, 8, 2, 237–242Google Scholar
Bertotti, L and Cavaleri, L., 1994, Accuracy of wind and wave evaluation in coastal regions, Proc. 24thInt. Conf. Coastal Engineering (Kobe), New York, ASCE, pp. 57–67Google Scholar
Bidlot, J.-R., Hansen, B. and Janssen, P. A. E. M., 1996, Wave modelling and operational forecasting at ECMWF, Proc. 1stInt. Conf. EuroGOOS, Amsterdam, Elsevier, pp. 206–213Google Scholar
Bishop, C. T. and Donelan, M. A., 1987, Measuring waves with pressure transducers, Coastal Engineering, 11, 309–328CrossRefGoogle Scholar
Blackman, R. B. and Tukey, J. W., 1958, The Measurement of Power Spectra, New York, Dover Publications Inc., 190 pp.Google Scholar
Booij, N., 1981, Gravity waves on water with non-uniform depth and current, Ph.D. Thesis, published as Communications on Hydraulics, Delft University of Technology, Department of Civil Engineering, Report No. 81--1, 130 pp
Booij., N. and Holthuijsen, L. H., 1987, Propagation of ocean waves in discrete spectral wave models, J. Comput. Phys., 68, 2, 307–326CrossRefGoogle Scholar
Booij, N., L. H. Holthuijsen, N. Doorn and A. T. M. M. Kieftenburg, 1997, Diffraction in a spectral wave model, Proc. 3rd Int. Symp. on Ocean Wave Measurement and Analysis WAVES 97 (Virginia Beach), Reston, VA, ASCE, pp. 243–255
Booij, N., Ris, R. C. and Holthuijsen, L. H., 1999, A third-generation wave model for coastal regions, Part I, Model description and validation, J. Geophys. Res., 104, C4, 7649–7666CrossRefGoogle Scholar
Booij, N., L. H. Holthuijsen and IJ. Haagsma, 2001, The effect of swell on the generation and dissipation of waves, Proc. 4thInt. Symp. on Ocean Wave Measurements and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 501–506
Borge, J. C. N., Reichert, K. and Dittmer, J., 1999, Use of nautical radar as a wave monitoring instrument, Coastal Engineering, 37, 331–342CrossRefGoogle Scholar
Borge, J. C. N., S. Lehner, Niedermeier, A. and Shulz-Stellenfleth, J., 2004, Detection of ocean wave groupiness from spaceborne synthetic aperture radar, J. Geophys. Res., 109, C07005, doi:10.1029/2004JC00298, 18 p.Google Scholar
Borgman, L. E., 1973, Probabilities for highest wave in hurricane, J. Waterways, Harbors and Coastal Engineering Div. ASCE, 99, WW2, 185–207Google Scholar
Bortkovskii, R. S., 1983, Air-Sea Exchange of Heat and Moisture during Storms, Dordrecht, D. Reidel Publishing Company, 247 pp.Google Scholar
Boussinesq, J. 1872, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Série 2, 17, 55–108Google Scholar
Bouws, E, 1978, Wind and Wave Climate in the Netherlands Sector of the North Sea between 53ο and 54ο North Latitude, De Bilt, Koninklijk Nederlands Meteorologisch Instituut, Scientific Report W.R. 78–9
Bouws, E. and Battjes, J. A., 1982, A Monte-Carlo approach to the computation of refraction of water waves, J. Geophys. Res., 87, C8, 5718–5722CrossRefGoogle Scholar
Bouws, E. and Komen, G. J., 1983, On the balance between growth and dissipation in an extreme, depth-limited wind-sea in the southern North Sea, J. Phys. Oceanogr., 13, 9, 1653–16582.0.CO;2>CrossRefGoogle Scholar
Bouws, E., Günther, H., Rosenthal, W. and Vincent, C. L., 1985, Similarity of the wind wave spectrum in finite depth water. 1. Spectral form, J. Geophys. Res., 90, C1, 975–986CrossRefGoogle Scholar
Bowen, A. J., Inman, D. L. and Simmons, V. P., 1968, Wave “set-down” and set-up, J. Geophys. Res., 73, 8, 2569–2577CrossRefGoogle Scholar
Bretherton, F. P. and Garrett, C. J. R., 1969, Wave trains in inhomogeneous moving media, Proc. Roy. Soc. London, A, 302, 529–554CrossRefGoogle Scholar
Bretschneider, C. L., 1952, The generation and decay of wind waves in deep water, Trans. Am. Geophys. Union, 33, 3, 381–389CrossRefGoogle Scholar
Bretschneider, C. L. 1958, Revisions in wave forecasting: deep and shallow water, Proc. 6thConf. Coastal Engineering (Gainsville, Palm Beach and Miami Beach, Florida), Richmond, CA, Council on Wave Research, University of California, 30–67
Bretschneider, C. L. 1959, Hurricane design-wave practices, Trans. ASCE, 124, 39–62Google Scholar
Breugem, W. A. and L. H. Holthuijsen, 2006, Generalised wave growth from Lake George, J. Waterway, Port, Coastal, and Ocean Engineering, Reston, VA, ASCE (in press)
Brevik, I. and Aas, B., 1980, Flume experiment on waves and currents. I. Rippled bed, Coastal Engineering, 3, 149–177CrossRefGoogle Scholar
Briggs, M. J. and P. L.-F. Liu, 1993, Experimental study of monochromatic wave-ebb current interaction, Proc. 2nd Int. Symp. on Ocean Wave Measurement and Analysis WAVES 93 (New Orleans), New York, ASCE, pp. 474–488
Briggs, M. J., Thompson, E. F. and Vincent, C. L., 1995, Wave diffraction around breakwater, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 121, 1, 23–35CrossRefGoogle Scholar
Brink-Kjær, O., 1984, Depth-current refraction of wave spectra, Proc. Symp. Description and Modelling of Directional Seas, paper No. C-7, Lyngby, Technical University of Denmark, 12pp
Broeze, J., Daalen, E. F. G. and Zandbergen, P. J., 1993, A three-dimensional panel method for nonlinear free surface waves on vector computers, Comput. Mech., 13, 1/2, 12–28CrossRefGoogle Scholar
Buccino, M. and M. Calabrese, 2002, Wave heights distribution in the surf zone: analysis of experimental data, Proc. 28thInt. Conf. Coastal Engineering (Cardiff), Reston, VA, ASCE, pp. 209–221
Buckley, W. H., 1983, A study of extreme waves and their effects on ship structures, U.S. Coast Guard Report No. SR-1281, Ship Structure Committee Report No. SSC-320, U.S. National Technical Information Service, VA 22161, 82 pp
Buckley, W. H., Pierce, R. D., Peters, J. B. and Davis, M. J., 1984, Use of the half-cycle analysis method to compare measured wave height and simulated Gaussian data having the same variance spectrum, Ocean Engineering, 11, 423–445CrossRefGoogle Scholar
Burgers, G. and Makin, V. K., 1993, Boundary-layer model results for wind-sea growth, J. Phys. Oceanogr., 23, 2, 372–3852.0.CO;2>CrossRefGoogle Scholar
Cai, M., D. R. Basco and J. Baumer, 1992, Bar/trough effects on wave height probability distributions and energy losses in surf zones, Proc. 23rdInt. Conf. Coastal Engineering (Venice), New York, ASCE, pp. 103–115
Caires, S. and A. Sterl, 2003, On the estimation of return values of significant wave height data from the reanalysis of the European Centre for Medium-range Weather Forecasts, in Safety and Reliability, eds. T. Bedford and P. H. A. J. M. van Gelder, Lisse Swets and Zeitlinger, pp. 353–361
Caires, S. and Sterl, A., 2005, 100-year return value estimates for ocean wind speeds and significant wave height from the ERA-40 data, J. Climate, 18, 1032–1048CrossRefGoogle Scholar
Cardone, V. J., Pierson, W. J. and Ward, E. G., 1976, Hindcasting the directional spectra of hurricane-generated waves, J. Petroleum Technol., 28, 385–394CrossRefGoogle Scholar
Cartwright, D. E. and Longuet-Higgins, M. S., 1956, The statistical distribution of the maxima of a random function, Proc. Roy. Soc. London, A, 237, 212–232CrossRefGoogle Scholar
Cartwright, D. E., 1958, On estimating the mean energy of sea waves from the highest wave in a record, Proc. Roy. Soc. London, A, 247, 22–48CrossRefGoogle Scholar
Castillo, E., 1988, Extreme Value Theory in Engineering, Boston, MA, Academic Press, Inc., 389 pp.Google Scholar
Cavaleri, L., 1979, Resistance wave staff, accuracy of the measurements, L'energia elettrica, 6, 299–306Google Scholar
Cavaleri, L. and Malanotte-Rizzoli, P., 1981, Wind wave prediction in shallow water: theory and application, J. Geophys. Res., 86, C11, 10 961–10 973CrossRefGoogle Scholar
Cavaleri, L., 1984, The CNR meteo-oceanographic spar buoy, Deep-Sea Res., 31, 4, 427–437CrossRefGoogle Scholar
Cavaleri, L., Bertotti, L. and Lionello, P., 1989, Shallow water application of the third-generation WAM wave model, J. Geophys. Res., 94, C6, 8111–8124CrossRefGoogle Scholar
Cavaleri, L. and Lionello, P., 1990, Linear and nonlinear approaches to bottom friction in wave motion: a critical intercomparison, Estuarine, Coastal and Shelf Sci., 30, 355–367CrossRefGoogle Scholar
Cavaleri, L., 1994, Wind variability, in Dynamics and Modelling of Ocean Waves, eds. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. and Janssen, P. A. E. M., Cambridge University Press, pp. 320–331Google Scholar
Cavaleri, L. 2000, The oceanographic tower Acqua Alta — activity and prediction of sea states at Venice, Coastal Engineering, 39, 29–70CrossRefGoogle Scholar
Cavanié, M., Arhan, M. and Ezraty, R., 1976, A statistical relationship between individual heights and periods of storm waves, Proc. Behaviour of Offshore Structures, Trondheim, The Norwegian Institute of Technology, pp. 354–363Google Scholar
CEM, 2002, Coastal Engineering Manual, U.S. Army Corps of Engineers, http://users. coastal.ufl.edu/~sheppard/eoc6430/Coastal_Engineering_Manual.htm
Chalikov, D. V., 1986, Numerical simulation of the boundary layer above waves, Boundary-Layer Meteorol., 34, 63–98CrossRefGoogle Scholar
Chappelear, J. E., 1962, Shallow water waves, J. Geophys. Res., 67, 12, 4693–4704CrossRefGoogle Scholar
Charnock, H., 1955, Wind stress on a water surface, Q. J. Roy. Meteorol. Soc., 81, 639CrossRefGoogle Scholar
Chawla, A. and Kirby, J. T., 2002, Monochromatic and random waves breaking at blocking points, J. Geophys. Res., 107, C7, doi:10.1029/2001JC001042, 19 p.CrossRefGoogle Scholar
Chen, Y. and Wang, H., 1983, Numerical model for nonstationary shallow water wave spectral transformations, J. Geophys. Res., 88, C14, 9851–9863CrossRefGoogle Scholar
Chen, Y., Guza, R. T. and Elgar, S., 1997, Modelling spectra of breaking surface waves in shallow water, J. Geophys. Res., 102, C11, 25 035–25 046CrossRefGoogle Scholar
Christoffersen, J. B., 1982, Current Depth Refraction of Dissipative Water Waves, Lyngby, Institute of Hydrodynamics and Hydraulic Engineering, 177 pp
Cokelet, E. D., 1977, Steep gravity waves in water of arbitrary uniform depth, Phil. Trans. Roy. Soc. London, A, 286, 1335, 183–230CrossRefGoogle Scholar
Coles, S., 2001, An Introduction to Statistical Modeling of Extreme Values, London, Springer-Verlag, 208 pp.CrossRefGoogle Scholar
Collins, J. I., 1970, Probabilities of breaking wave characteristics, Proc. 13th Conf. Coastal Engineering (Washington), New York, ASCE, pp. 399–414Google Scholar
Collins, J. I., 1972, Prediction of shallow-water spectra, J. Geophys. Res., 77, 15, 2693–2707CrossRefGoogle Scholar
COST, 2005, Measuring and Analysing the Directional Spectra of Ocean Waves, eds. Hauser, D., Kahma, K., Krogstad, H. E., Lehner, S., Monbaliu, J. A. J. and Wyatt, L. R., Luxembourg, Office for Official Publications of the European Communities, 465 pp.Google Scholar
Cote, L. J., Davis, J. O., Marks, W., McGough, R. J., Mehr, E., Pierson, W. J., Ropek, J. F., Stephenson, G. and Vetter, R. C., 1960, The directional spectrum of wind generated sea as determined from data obtained by the Stereo Wave Observation Project, in Meteoro-logical Papers, 2, 6, New York, New York University, College of Engineering, 88 pp.Google Scholar
Cramer, H., 1946, Mathematical Methods of Statistics, Princeton, NJ, Princeton University Press, 575 pp.Google Scholar
Crapper, G. D., 1984, Introduction to Water Waves, Chichester, Ellis Horwood Ltd., 224 pp.Google Scholar
Dacunha, N. M. C., N. Hogben and K. S. Andrews, 1984, Ocean wave statistics: a new look, Proc. Oceanology International Conference, Brighton, Society of Underwater Technology, OI 2.15/1–13
Dally, W. R., Dean, R. G. and Dalrymple, R. A., 1984, A model for breaker decay on beaches, Proc. 19thInt. Conf. Coastal Engineering (Houston), New York, ASCE, pp. 82–98Google Scholar
Dally, W. R., Dean, R. G. and Dalrymple, R. A., 1985, Wave height variation across beaches of arbitrary profile, J. Geophys. Res., 90, C6, 11 917–11 927CrossRefGoogle Scholar
Dalrymple, R. A. and Kirby, J. T., 1988, Models for very wide-angle water waves and wave diffraction, J. Fluid Mech., 192, 33–50CrossRefGoogle Scholar
Dalrymple, R. A., Suh, K. D., Kirby, J. T. and Chae, J. W., 1989, Models for very wide-angle water waves and wave diffraction. Part 2. Irregular bathymetry, J. Fluid Mech., 201, 299–322CrossRefGoogle Scholar
Davis, R. E. and Regier, L. A., 1977, Methods for estimating directional wave spectra from multi-element arrays, J. Mar. Res., 35, 3, 453–477Google Scholar
Deacon, G. E. R., 1949, Recent studies of waves and swell, in Ocean Surface Waves, Annals of the New York Academy of Sciences, 51, 3, 475–482Google Scholar
Dean, R. G., 1965, Stream function representation of nonlinear ocean waves, J. Geophys. Res., 70, 18, 4561–4572CrossRefGoogle Scholar
Dean, R. G. 1974, Evaluation and Development of Water Wave Theories for Engineering Application, Technical Report No. 4, I + II, Ft. Belvoir, VA, U.S. Army Corps of Engineers, Coastal Engineering Research Center, 133 + 534 pp
Dean, R. G. and Dalrymple, R. A., 1998, Water Wave Mechanics for Engineers and Scientists, Singapore, World Scientific, 2, 353 pp.Google Scholar
Vries, J. J., Waldron, J. and Cunningham, V., 2003, Field tests of the new Datawell DWR-G GPS wave buoy, Sea Technol., 44, 12, 50–55Google Scholar
Ding, L. and Farmer, D. M., 1994, Observations of breaking surface wave statistics, J. Phys. Oceanogr., 24, 6, 1368–13872.0.CO;2>CrossRefGoogle Scholar
Dingemans, M. W., Radder, A. C. and Vriend, H. J., 1987, Computation of the driving forces of wave-induced currents, Coastal Engineering, 11, 539–563CrossRefGoogle Scholar
Dingemans, M. W., 1997a, Water Wave Propagation over Uneven Bottoms, Part 1 — Linear Wave Propagation, Singapore, World Scientific, 13, pp. 1–471
Dingemans, M. W., 1997b, Water Wave Propagation over Uneven Bottoms, Part 2 — Nonlinear Wave Propagation, Singapore, World Scientific, 13, pp. 473–967
Doering, J. C. and Bowen, A. J., 1986, Shoaling surface gravity waves: a bispectral analysis, Proc. 20th Int. Conf. Coastal Engineering (Taipei), New York, ASCE, pp. 150– 162Google Scholar
Doering, J. C. and Bowen, A. J., 1995, Parameterization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis, Coastal Engineering, 26, 1–2, 15–33CrossRefGoogle Scholar
Donelan, M. A. and Yuan, Y., 1984, Wave dissipation by surface processes, in Dynamics and Modelling of Ocean Waves, eds. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. and Janssen, P. A. E. M., Cambridge, Cambridge University Press, pp. 143–155Google Scholar
Donelan, M. A., Hamilton, J. and Hui, W. H., 1985, Directional spectra of wind-generated waves, Phil. Trans. Roy. Soc. London, A, 315, 509–562CrossRefGoogle Scholar
Donelan, M. A. and Hui, W. H., 1990, Mechanics of ocean surface waves, in Surface Waves and Fluxes, I, eds. Geernaert, G. L. and Plant, W. J., Dordrecht, Kluwer Academic Publishers, pp. 209–246Google Scholar
Dorrestein, R., 1960, Simplified method of determining refraction coefficients for sea waves, J. Geophys. Res., 65, 2, 637–642CrossRefGoogle Scholar
Douglass, S. L. and Weggel, J. R., 1988, Laboratory experiments on the influence of wind on nearshore wave breaking, Proc. 21stInt. Conf. Coastal Engineering (Malaga), New York, ASCE, pp. 632–643Google Scholar
Douglass, S. L., 1990, Influence of wind on breaking waves, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 116, 6, 651–663CrossRefGoogle Scholar
Draper, L., 1965, “Freak” ocean waves, Mar. Obs., 35, 193–195Google Scholar
Earle, M. D., 1975, Extreme wave conditions during hurricane Camille, J. Geophys. Res., 80, 3, 377–379CrossRefGoogle Scholar
Earle, M. D. and Malahoff, A. (eds.), 1979, Ocean Wave Climate, Proc. Ocean Wave Climate Symp., Herndon, Va., 1977, New York, Plenum Press, 368 pp.CrossRefGoogle Scholar
Ebersole, B. A., 1985, Refraction-diffraction model for linear water waves, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 111, 6, 939–953CrossRefGoogle Scholar
Eckart, C., 1952, The propagation of gravity waves from deep to shallow water, Proc. NBS Semicentennial Symp. on Gravity Waves, 1951, Washington, National Bureau of Standards, Circular 521, pp. 165–173Google Scholar
Edgeworth, F. Y., 1908, The law of error, Trans. Camb. Phil. Soc., 20, 36–65Google Scholar
Eldeberky, Y. and Battjes, J. A., 1995, Parameterization of triad interactions in wave energy models, Proc. Coastal Dynamics '95(Gdańsk), New York, ASCE, pp. 140–148Google Scholar
Eldeberky, Y. and Battjes, J. A., 1996, Spectral modelling of wave breaking: application to Boussinesq equations, J. Geophys. Res., 101, C1, 1253–1264CrossRefGoogle Scholar
Eldeberky, Y., 1996, Nonlinear transformation of wave spectra in the nearshore zone, Ph.D. thesis, published as Communications on Hydraulic and Geotechnical Engineering, Delft University of Technology, Faculty of Civil Engineering, Report No. 96--4, 203 pp
Eldeberky, Y. and Madsen, P. A., 1998, Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves, Coastal Engineering, 38, 1, 1–25Google Scholar
Elfouhaily, T., Chapron, B. and Katsaros, K., 1997, A unified directional spectrum for long and short wind-driven waves, J. Geophys. Res., 102, C7, 15 781–15 796CrossRefGoogle Scholar
Elgar, S., Guza, R. T. and Seymour, R. J., 1984, Groups of waves in shallow water, J. Geophys. Res., 89, C3, 3623–3634CrossRefGoogle Scholar
Elgar, S. and Guza, R. T., 1985a, Shoaling gravity waves: comparisons between field observations, linear theory, and a nonlinear model, J. Fluid Mech., 158, 47–70CrossRefGoogle Scholar
Elgar, S. and Guza, R. T. 1985b, Observations of bispectra of shoaling surface gravity waves, J. Fluid Mech., 161, 425–448CrossRefGoogle Scholar
Elgar, S. and Guza, R. T. 1986, Nonlinear model predictions of bispectra of shoaling surface gravity waves, J. Fluid Mech., 167, 1–18CrossRefGoogle Scholar
Elgar, S., Freilich, M. H. and Guza, R. T., 1990, Model-data comparisons of moments of nonbreaking shoaling surface gravity waves, J. Geophys. Res., 95, C9, 16 055– 16 063CrossRefGoogle Scholar
Elgar, S., Guza, R. T. and Freilich, M., 1993, Observations of nonlinear interactions in directionally spread shoaling surface gravity waves, J. Geophys. Res., 98, 20 299–20 305CrossRefGoogle Scholar
Elgar, S., Herbers, T. H. C., Chandran, V. and Guza, R. T., 1995, Higher-order spectral analysis of nonlinear ocean surface gravity waves, J. Geophys. Res., 100, C3, 4977–4983CrossRefGoogle Scholar
Elgar, S., Guza, R. T., Raubenheimer, B., Herbers, T. H. C. and Gallagher, E. L., 1997, Spectral evolution of shoaling and breaking waves on a barred beach, J. Geophys. Res., 102, C7, 15 797–15 805CrossRefGoogle Scholar
Elliott, J. A., 1972a, Microscale pressure fluctuations measured within the lower atmospheric boundary layer, J. Fluid Mech., 53, 2, 351–384CrossRefGoogle Scholar
Elliott, J. A. 1972b, Microscale pressure fluctuations near waves being generated by wind, J. Fluid Mech., 54, 3, 427–448CrossRefGoogle Scholar
Elwany, M. H. S., O'Reilly, W. C., Guza, R. T. and Flick, R. E., 1995, Effects of Southern California kelp beds on waves, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 121, 2, 143–150CrossRefGoogle Scholar
Ewans, K. C., 1998, Observations of the directional spectrum of fetch-limited waves, J. Phys. Oceanogr., 28, 3, 495–5122.0.CO;2>CrossRefGoogle Scholar
Ewing, J. A., 1971, A numerical wave prediction method for the North Atlantic Ocean, Deutsch. Hydrogr. Z., 24, 6, 241–261CrossRefGoogle Scholar
Ewing, J. A. 1973, Mean length of runs of high waves, J. Geophys. Res., 78, 1933–1936Google Scholar
Ewing, J. A., Weare, T. J. and Worthington, B. A., 1979, A hindcast study of extreme wave conditions in the North Sea, J. Geophys. Res., 84, C9, 5739–5747CrossRefGoogle Scholar
Ewing, J. A. and Laing, A. K., 1987, Directional spectra of seas near full development, J. Phys. Oceanogr., 17, 10, 1696–17062.0.CO;2>CrossRefGoogle Scholar
Ewing, J. A. and Hague, R. C., 1993, A second-generation wave model for coastal wave prediction, Proc. 2nd Int. Symp. Ocean Wave Measurement and Analysis WAVES 93 (New Orleans), New York, ASCE, pp. 576–589Google Scholar
Farge, M., 1992, Wavelet transforms and their application to turbulence, Annu. Rev. Fluid Mech., 24, 395–457CrossRefGoogle Scholar
Fenton, J. D., 1985, A fifth-order Stokes theory for steady waves, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 111, 2, 216–234CrossRefGoogle Scholar
Fenton, J. D. 1988, The numerical solution of steady water wave problems, Computers Geosci., Pergamon Press, 14, 3, 357–368CrossRefGoogle Scholar
Fenton, J. D. 1990, Nonlinear wave theories, in The Sea, eds. Méhauté, B. and Hanes, D., New York, John Wiley & Sons Inc., 9A, pp. 3–25Google Scholar
Fenton, J. D. and McKee, W. D., 1990, On calculating the lengths of water waves, Coastal Engineering, 14, 499–513CrossRefGoogle Scholar
Fenton, J. D., 1999, Numerical methods for nonlinear waves, Advances in Coastal and Ocean Engineering, ed. Liu, P. L.-F., Singapore, World Scientific, 5, pp. 241– 324Google Scholar
Ferreira, J. A. and C. G. Soares, 1998, An application of the peaks over threshold method to predict extremes of significant wave height, J. Offshore Mechanics and Arctic Engineering, ASME, 120, 165–176
Ferziger, J. H. and Perić, M., 2002, Computational Methods for Fluid Dynamics, 3rd edn., Berlin, Springer-Verlag, 423 pp.CrossRefGoogle Scholar
Fisher, F. H. and Spiess, F. N., 1963, Flip-Floating Instrument Platform, J. Acoust. Soc. Am., 35, 10, 1633–1644CrossRefGoogle Scholar
Forristall, G. Z., 1978, On the statistical distribution of wave heights in a storm, J. Geophys. Res., 83, C5, 2353–2358CrossRefGoogle Scholar
Forristall, G. Z. 1981, Measurements of a saturated range in ocean wave spectra, J. Geophys. Res., 86, C9, 8075–8084CrossRefGoogle Scholar
Forristall, G. Z. 1984, The distribution of measured and simulated wave heights as a function of spectral shape, J. Geophys. Res., 89, C6, 10 547–10 552CrossRefGoogle Scholar
Forristall, G. Z. and Ewans, K. C., 1998, Worldwide measurements of directional wave spreading, J. Atm. Ocean Technol., 15, 2, 440–4692.0.CO;2>CrossRefGoogle Scholar
Forristall, G. Z., 2000, Wave crest distributions: observations and second-order theory, J. Phys. Oceanogr, 30, 1931–19432.0.CO;2>CrossRefGoogle Scholar
Foufoula-Georgiou, E. and Kumar, P. (eds.), 1994, Wavelets in Geophysics, San Diego, CA,Academic Press, 372 pp.Google Scholar
Freilich, M. H. and Guza, R. T., 1984, Nonlinear effects on shoaling surface gravity waves, Phil. Trans. Roy. Soc. London, A, 311, 1–41CrossRefGoogle Scholar
Freilich, M. H., Guza, R. T. and Elgar, S. L., 1990, Observations of nonlinear effects in directional spectra of shoaling gravity waves, J. Geophys. Res, 95, C6, 9645–9656CrossRefGoogle Scholar
Galvin, C. J., 1968, Breaker type classification on three laboratory beaches, J. Geophys. Res., 73, 12, 3651–3659CrossRefGoogle Scholar
Galvin, C. J. 1972, Wave breaking in shallow water, in Waves on Beaches and Resulting Sediment Transport, ed. Meyer, R. E., New York, Academic Press, pp. 413–456Google Scholar
Garrett, C. J. R., 1967, The adiabatic invariant for wave propagation in a nonuniform moving medium, Proc. Roy. Soc. London, A, 299, 26–27CrossRefGoogle Scholar
Geernaert, G. L. and Plant, W. J., 1990, Surface Waves and Fluxes, Vol. I — Current Theory, Dordrecht, KluwerAcademic Publishers, 337 pp.Google Scholar
Gelci, C. J. and Devillaz, E., 1970, Le calcul numérique de l'état de la mer, La houille blanche, 25, 2, 117–136CrossRefGoogle Scholar
Gelci, R., Cazale, J. and Vassal, J., 1956, Utilisation des diagrammes de propagation à la provision énergétique de la houle, Bulletin d'Information du Comité Central d'Océanographie et d'Études des Côtes, 8, 4, 169–197Google Scholar
Gelci, R., Devillaz, E. and Chavy, P., 1964, Évolution de l'état de la mer, calcul numérique des advections, Notes de l'Établissement d'Études et de Recherches Météorologiques, 166, 14 pp.Google Scholar
Georges, T. M. and Harlan, J. A., 1994, New horizons for over-the-horizon radar?, IEEE Antennas and Propagation Magazine, 36, 4, 14–24CrossRefGoogle Scholar
Gerson, M, 1975, The techniques and uses of probability plotting, The Statistician, J. Roy. Statist. Soc., Series D, 24, 4, 235–257Google Scholar
Goda, Y., H. Takeda and Y. Moriya, 1967, Laboratory Investigation on Wave Transmission over Breakwaters, Report of the Port and Harbour Research Institute, No. 13, pp. 1–38
Goda, Y., 1975, Irregular wave deformation in the surf zone, Coastal Engineering in Japan, 18, 13–26CrossRefGoogle Scholar
Goda, Y. 1978, The observed joint probability distribution of periods and heights of sea waves, Proc. 16thConf. Coastal Engineering (Hamburg), New York, ASCE, pp. 227–246Google Scholar
Goda, Y., Takayama, T. and Suzuki, Y., 1978, Diffraction diagrams for directional random waves, Proc. 16thConf. Coastal Engineering (Hamburg), New YorkASCE, pp. 628–650Google Scholar
Goda, Y., 1986, Effect of wave tilting on zero-crossing wave heights and periods, Coastal Engineering in Japan, 29, 79–90CrossRefGoogle Scholar
Goda, Y. 1988a, Statistical variability of sea state parameters as a function of a wave spectrum, Coastal Engineering in Japan, 31, 1, 39–52CrossRefGoogle Scholar
Goda, Y. 1988b, On the methodology of selecting design wave height, Proc. 21stInt. Conf. Coastal Engineering(Malaga), New York, ASCE, pp. 899–913Google Scholar
Goda, Y. and Kobune, K., 1990, Distribution function fitting for storm wave data, Proc. 22ndInt. Conf. Coastal Engineering (Delft), New York, ASCE, pp. 18–31Google Scholar
Goda, Y., 1992, Uncertainty of design parameters from viewpoint of extreme statistics, J. Offshore Mechanics and Arctic Engineering, ASME, 114, 76–82CrossRefGoogle Scholar
Goda, Y., Hawkes, M. P., Mansard, E., Martin, M. J., Mathiesen, M., Peltier, E., Thompson, E. and Vledder, G., 1993, Intercomparison of extremal wave analysis methods using numerically simulated data, Proc. 2nd Int. Symp. Ocean Wave Measurement and Analysis WAVES 93(New Orleans), New York, ASCE, pp. 963–977Google Scholar
Goda, Y., 1997, Directional wave spectrum and its engineering applications, in Advances in Coastal and Ocean Engineering, ed. Liu, P. L.-F., Singapore, World Scientific, 3, pp. 67–102Google Scholar
Goda, Y. and Morinobu, K., 1998, Breaking wave heights on horizontal bed affected by approach slope, Coastal Engineering J., 40, 4, 307–326CrossRefGoogle Scholar
Goda, Y., 2000, Random Seas and Design of Maritime Structures, Singapore, World Scientific, 443 pp.CrossRefGoogle Scholar
Godden, J., 1977, Are episodic waves responsible for ship disappearances?, Shipping, 9(37)–11(39)Google Scholar
Golding, B. W., 1983, A wave prediction system for real-time sea state forecasting, Q. J. Roy. Meteorol. Soc, 109, 393–416CrossRefGoogle Scholar
Golub, G. H. and Loan, C. F., 1986, Matrix Computations, London, North Oxford Academic, 476 pp.Google Scholar
González, F. I., 1984, A case-study of wave-current-bathymetry interactions at the Columbia River entrance, J. Phys. Oceanogr, 14, 6, 1065–10782.0.CO;2>CrossRefGoogle Scholar
Gorshkov, S. G., 1986, World Ocean Atlas, Vol. 1: Pacific Ocean; Vol. 2: Atlantic and Indian Oceans; Vol. 3: Arctic Ocean, Oxford, Pergamon Press
Gourlay, M. R., 1992, Wave set-up, wave run-up and beach water table: interaction between surf zone hydraulics and groundwater hydraulics, Coastal Engineering, 17, 93–144CrossRefGoogle Scholar
Graber, H. C. and Madsen, O. S., 1988, A finite-depth wind-wave model. Part I: model description, J. Phys. Oceanogr, 18, 11, 1465–14832.0.CO;2>CrossRefGoogle Scholar
Graham, C., 1982, The parameterisation and prediction of wave height and wind speed persistence statistics for oil industry operational planning purposes, Coastal Engineering, 6, 303–329CrossRefGoogle Scholar
Grant, W. D. and Madsen, O. S., 1982, Movable bed roughness in unsteady oscillatory flow, J. Geophys. Res., 87, C1, 469–481CrossRefGoogle Scholar
Gringorten, I. I., 1963, A plotting rule for extreme probability paper, J. Geophys. Res., 68, 3, 813–814CrossRefGoogle Scholar
Gumbel, E. J., 1958, Statistics of Extremes, New York, Columbia University Press, 375 pp.Google Scholar
Gumbley, J., 1977, Holes in the sea swallow up ships, Freighting World, 16, MarchGoogle Scholar
Günther, H., Rosenthal, W., Weare, T. J., Worthington, B. A., Hasselmann, K. and Ewing, J. A., 1979, A hybrid parametrical wave prediction model, J. Geophys. Res, 84, C9, 5727–5738CrossRefGoogle Scholar
Günther, H., S.Hasselmann and P. A. E. M. Janssen, 1992, The WAM Model Cycle 4 (Revised Version), Technical Report No. 4, Hamburg, Deutsches Klimatisches Rechenzentrum
Günther, H. and W. Rosenthal, 2002, Singular waves, propagation and prognosis, Proc. 7thInt. Workshop on Wave Hindcasting and Forecasting (Banff, Alberta), ed. V. R. Swail, published on CD only, Toronto, Ontario, Canada, Environment Canada, 8 pp
Gutshabash, Ye. Sh. and Lavrenov, I. V., 1986, Swell transformation in the Cape Agulhas Current, Izv. Acad. Sci. USSR, Atmospheric and Oceanic Phys., 22, 6, 494–497Google Scholar
Haine, R. A., 1980, Second generation shipborne wave recorder, Transducer Technol., 2, 25–28Google Scholar
Hansen, C., Katsaros, K. B., Kitaigorodsk, S. A. ii and Larsen, S. E., 1990, The dissipation range of wind-wave spectra observed on a lake, J. Phys. Oceanogr, 20, 9, 1264–12772.0.CO;2>CrossRefGoogle Scholar
Hardy, T. A. and Young, I. R., 1996, Field study of wave attenuation on an offshore coral reef, J. Geophys. Res, 101, C6, 14 311–14 326CrossRefGoogle Scholar
Haring, R. E., Osborne, A. R. and Spencer, L. P., 1976, Extreme wave parameters based on continental shelf storm wave records, Proc. 15thConf. Coastal Engineering (Honolulu), New York, ASCE, pp. 151–170Google Scholar
Harlow, F. H. and Welch, J. E., 1965, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 12, 2182–2189CrossRefGoogle Scholar
Hashimoto, N., Mitsui, M., Goda, Y., Nakai, T. and Takahashi, T., 1996, Improvement of submerged Doppler-type directional wave meter and its application to field observation, Proc. 25thInt. Conf. Coastal Engineering (Orlando), New York, ASCE, pp. 629–642Google Scholar
Hashimoto, N., 1997, Analysis of the directional wave spectrum from field data, Advances in Coastal and Ocean Engineering, ed. Liu, P. L.-F., Singapore, World Scientific, 3, pp. 103–143Google Scholar
Hasselmann, D. E., Dunckel, M. and Ewing, J. A., 1980, Directional wave spectra observed during JONSWAP 1973, J. Phys. Oceanogr, 10, 8, 1264–12802.0.CO;2>CrossRefGoogle Scholar
Hasselmann, K., 1960, Grundgleichungen der Seegangsvoraussage, Schiffstechnik, 1, 191–195Google Scholar
Hasselmann, K. 1962, On the nonlinear energy transfer in a gravity-wave spectrum. Part 1. General theory, J. Fluid Mech, 12, 481–500CrossRefGoogle Scholar
Hasselmann, K. 1963a, On the nonlinear energy transfer in a gravity-wave spectrum. Part 2. Conservation theorems; wave-particle analogy; irreversibility, J. Fluid Mech, 15, 273–281CrossRefGoogle Scholar
Hasselmann, K. 1963b, On the nonlinear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum, J. Fluid Mech, 15, 385–398CrossRefGoogle Scholar
Hasselmann, K., Munk, W. and MacDonald, G., 1963, Bispectra of ocean waves, in Time Series Analysis, ed. Rosenblatt, M., New York, John Wiley and Sons, pp. 125–139Google Scholar
Hasselmann, K. and Collins, J. I., 1968, Spectral dissipation of finite-depth gravity waves due to turbulent bottom friction, J. Mar. Res., 26, 1, 1–12Google Scholar
Hasselmann, , , K., 1968, Weak-interaction theory of ocean waves, Basic Developments in Fluid Dynamics, ed. Holt, M., New York, Academic Press, 2, pp. 117–182Google Scholar
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W. and Walden, H., 1973, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutsch. Hydrogr. Z., Suppl., A 8, 12, 95 pp.Google Scholar
Hasselmann, K., 1974, On the spectral dissipation of ocean waves due to white capping, Boundary-Layer Meteorol., 6, 1–2, 107–127CrossRefGoogle Scholar
Hasselmann, K., Ross, D. B., Müller, P. and Sell, W., 1976, A parametric wave prediction model, J. Phys. Oceanogr., 6, 200–2282.0.CO;2>CrossRefGoogle Scholar
Hasselmann, S. and Hasselmann, K., 1981, A symmetrical method of computing the nonlinear transfer in a gravity-wave spectrum, Hamburger Geophys. Einzelschr., A, 52, 138 pp.Google Scholar
Hasselmann, S., Hasselmann, K., Allender, J. H. and Barnett, T. P., 1985a, Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part II: parameterizations of the nonlinear transfer for application in wave models, J. Phys. Oceanogr., 15, 11, 1378–13912.0.CO;2>CrossRefGoogle Scholar
Hasselmann, K., Raney, R. K., Plant, W. J., Alpers, W., Shuchman, R. A., Lyzenga, D. R., Rufenach, C. L. and Tucker, M. J., 1985b, Theory of synthetic aperture radar imaging: a MARSEN view, J. Geophys. Res., 90, C3, 4659–4686CrossRefGoogle Scholar
Hasselmann, K. and Hasselmann, S., 1991, On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion, J. Geophys. Res., 96, C6, 10 713–10 729CrossRefGoogle Scholar
Hasselmann, S., Brüning, C., Hasselmann, K. and Heimbach, P., 1996, An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra, J. Geophys. Res, 101, C7, 16 615–16 629CrossRefGoogle Scholar
Haver, S. and O. J. Andersen, 2000, Freak waves: rare realisations of a typical population or typical realisations of a rare population?, Proc. 10th Offshore and Polar Engineering Conf., ISOPE, III, pp. 123–130
Heathershaw, A. D., Blackley, M. W. L. and Hardcastle, P. J., 1980, Wave direction estimates in coastal waters using radar, Coastal Engineering, 3, 249–267CrossRefGoogle Scholar
Herbers, T. H. C. and Guza, R. T., 1991, Wind-wave nonlinearity observed at the sea floor, Part I: forced-wave energy, J. Phys. Oceanogr., 21, 12, 1740–17612.0.CO;2>CrossRefGoogle Scholar
Herbers, T. H. C. and Burton, M. C., 1997, Nonlinear shoaling of directionally spread waves on a beach, J. Geophys. Res, 102, C9, 21 101–21 114CrossRefGoogle Scholar
Herbers, T. H. C., Elgar, S. and Guza, R. T., 1999, Directional spreading of waves in the nearshore, J. Geophys. Res, 104, C4, 7683–7693CrossRefGoogle Scholar
Herbers, T. H. C., Hendrickson, E. J. and Reilly, W. C. O', 2000a, Propagation of swell across a wide continental shelf, J. Geophys. Res., 105, C8, 19 729–19 737CrossRefGoogle Scholar
Herbers, T. H. C., Russnogle, N. R. and Elgar, S., 2000b, Spectral energy balance of breaking waves within the surf zone, J. Phys. Oceanogr, 30, , 11, 2723–27372.0.CO;2>CrossRefGoogle Scholar
Herbers, T. H. C., Orzech, M., Elgar, S. and Guza, R. T., 2003, Shoaling transformation of frequency-directional spectra, J. Geophys. Res., 108, C1, 3013, doi:10.1029/2001JC001304, 17 p.CrossRefGoogle Scholar
Herbich, J. B. (ed.), 1990, Handbook of Coastal and Ocean Engineering, 1, Wave Phenomena and Coastal Structures, Houston, TX, Gulf Publishing Company, 1155 pp.Google Scholar
Herman, R., 1992, Solitary waves, Am. Scientist, 80, 350–361Google Scholar
Herterich, K. and Hasselmann, K., 1980, A similarity relationship for the nonlinear transfer in a finite-depth gravity-wave spectrum, J. Fluid Mech., 97, 1, 215–224CrossRefGoogle Scholar
Hessner, K., Reichert, K., Dittmer, J., Nieto, J. C. Borge and Günther, H., 2001, Evaluation of WAMOS II wave data, Proc. 4th Int. Symp. Ocean Wave Measurement and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 221–230Google Scholar
Hirt, C. W. and Nichols, B. D., 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys, 39, 201–225CrossRefGoogle Scholar
Hogben, N. and Lumb, F. E., 1967, Ocean Wave Statistics, London, Her Majesty's Stationery OfficeGoogle Scholar
Hogben, N., Dacunha, N. M. and Olliver, G. F., 1985, Global WaveStatistics, London, British Maritime Technology Ltd and Unwin BrothersGoogle Scholar
Hogben, N., 1988, Experience from compilation of Global Wave Statistics, Ocean Engineering, 15, 1–31CrossRefGoogle Scholar
Hogben, N. 1990a, Overview of global wave statistics, Encyclopedia of Fluid Mechanics, Houston, TX, Gulf Publishing Company, 10, pp. 391–427Google Scholar
Hogben, N. 1990b, Long term wave statistics, in The Sea, eds. Méhauté, B. and Hanes, D., New York, John Wiley & Sons Inc., 9A, pp. 293–333Google Scholar
Holthuijsen, L. H., 1983a, Stereophotography of ocean waves, Appl. Ocean Res., 5, 4, 204–209CrossRefGoogle Scholar
Holthuijsen, L. H. 1983b, Observations of the directional distribution of ocean wave energy in fetch-limited conditions, J. Phys. Oceanogr., 13, 2, 192–2072.0.CO;2>CrossRefGoogle Scholar
Holthuijsen, L. H. and Herbers, T. H. C., 1986, Statistics of breaking waves observed as whitecaps in the open sea, J. Phys. Oceanogr, 16, 2, 290–2972.0.CO;2>CrossRefGoogle Scholar
Holthuijsen, L. H. and Boer, S., 1988, Wave forecasting for moving and stationary targets, Proc. Computer Modelling in Ocean Engineering (Venice), eds. Schrefler, B. A. and Zienkiewicz, O. C., Rotterdam, Balkema, pp. 231–234Google Scholar
Holthuijsen, L. H., Booij, N. and Herbers, T. H. C., 1989, A prediction model for stationary, short-crested waves in shallow water with ambient currents, Coastal Engineering, 13, 23–54CrossRefGoogle Scholar
Holthuijsen, L. H. and Tolman, H. L., 1991, Effects of the Gulf Stream on ocean waves, J. Geophys. Res, 96, C7, 12 755–12 771CrossRefGoogle Scholar
Holthuijsen, L. H. and Booij, N., 1994, Bottom induced scintillation of long- and short-crested waves, Proc. Int. Symp.: Waves — Physical and Numerical Modelling, eds. Isaacson, M. and Quick, M., Vancouver, University of British Columbia, II, pp. 604–613Google Scholar
Holthuijsen, L. H., Herman, A. and Booij, N., 2003, Phase-decoupled refraction-diffraction for spectral wave models, Coastal Engineering, 49, 4, 291–305CrossRefGoogle Scholar
Houmb, O. G. and Rye, H., 1973, Analyses of wave data from the Norwegian continental shelf, Proc. 2ndInt. on Conf. Port and Ocean Engineering under Arctic Conditions, Reykjavík, University of Iceland, Department of Engineering and Science, pp. 780–788Google Scholar
Hsiao, S. V. and Shemdin, O. H., 1978, Bottom dissipation in finite-depth water waves, Proc. 16thConf. Coastal Engineering (Hamburg), New York, ASCE, pp. 434–448Google Scholar
Hsiao, S. V. and Shemdin, O. H. 1983, Measurements of wind velocity and pressure with a wave follower during MARSEN, J. Geophys. Res., 88, C14, 9841–9849CrossRefGoogle Scholar
Hsu, T.-W., Ou, S.-H. and Liau, J.-M., 2005, Hindcasting nearshore wind waves using a FEM code for SWAN, Coastal Engineering, 52, 177–195CrossRefGoogle Scholar
Huang, N. E., Long, S. R., Tung, C.-C., Yuen, Y. and Bliven, L. F., 1981, A unified two-parameter wave spectral model for a general sea state, J. Fluid Mech., 112, 203–224CrossRefGoogle Scholar
Huang, N. E., Tung, C.-C. and Long, S. R., 1990a, Wave spectra, in The Sea, eds. Méhauté, B. and Hanes, D., New York, John Wiley & Sons Inc., in 9A, pp. 197–237Google Scholar
Huang, N. E., Tung, C.-C. and Long, S. R. 1990b, The probability structure of the ocean surface, in The Sea, eds. Méhauté, B. and Hanes, D., New York, John Wiley & Sons Inc., 9A, pp. 335–366Google Scholar
Hughes, S. A. and Borgman, L. E., 1987, Beta-Rayleigh distribution for shallow water waves, Proc. Coastal Hydrodynamics (Newark), New York, ASCE, pp. 17–31Google Scholar
Hunt, J. N., 1979, Direct solution of wave dispersion equation, J. Waterways, Port, Coastal and Ocean Div., New York, ASCE, 105, WW4, 457–459
Hurdle, D. P. and Stive, R. J. H., 1989, Revision of SPM 1984 wave hindcast model to avoid inconsistencies in engineering applications, Coastal Engineering, 12, 339–351CrossRefGoogle Scholar
Hwang, P. A., Walsh, E. J., Krabill, W. B., Swift, R. N., Manizade, S. S., Scott, J. F. and Earle, M. D., 1998, Airborne remote sensing applications to coastal wave research, J. Geophys. Res., 103, C9, 18 791–18 800CrossRefGoogle Scholar
Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B. and Swift, R. N., 2000a, Airborne measurements of the wave number spectra of ocean surface waves. Part I: Spectral slope and dimensionless spectral coefficient, J. Phys. Oceanogr, 30, 11, 2753–27672.0.CO;2>CrossRefGoogle Scholar
Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B. and Swift, R. N. 2000b, Airborne measurement of the wavenumber spectra of ocean surface waves. Part II: Directional distribution, J. Phys. Oceanogr, 30, 11 2768–27872.0.CO;2>CrossRefGoogle Scholar
Hwang, P. A. and Wang, D. W., 2001, Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum, J. Phys. Oceanogr, 31, 5, 1346–13602.0.CO;2>CrossRefGoogle Scholar
Iribarren, R. and Nogales, C., 1949, Protection des ports, XVIIth Int. Naval Congress, Lisbon, Section II, Communication, 4, pp. 31–80Google Scholar
Isobe, M., 1985, Calculation and application of first-order cnoidal wave theory, Coastal Engineering, 9, 309–325CrossRefGoogle Scholar
Jackson, F. C., Walton, W. T. and Peng, C. Y., 1985, A comparison of in situ and airborne radar observations of ocean wave directionality, J. Geophys. Res., 90, C1, 1005–1018CrossRefGoogle Scholar
James, I. D., 1986, A note on the theoretical comparison of wave staffs and Waverider buoys in steep gravity waves, Ocean Engineering, 13, 2, 209–214CrossRefGoogle Scholar
Janssen, P. A. E. M. and Komen, G. J., 1985, Effect of atmospheric stability on the growth of surface gravity waves, Boundary-Layer Meteorol., 32, 85–96CrossRefGoogle Scholar
Janssen, P. A. E. M., 1991a, Quasi-linear theory of wind-wave generation applied to wave forecasting, J. Phys. Oceanogr., 21, 11, 1631–16422.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M. 1991b, Consequences of the effect of surface gravity waves on the mean air flow, Breaking Waves, IUTAM Symposium, Sydney, eds. Banner, M. L. and Grimshaw, R. H. J., Berlin, Springer-Verlag, pp. 193–206Google Scholar
Janssen, P. A. E. M. and Viterbo, P., 1996, Ocean waves and the atmospheric climate, J. Climate, 9, 6, 1269–12872.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M., 2003, Nonlinear four-wave interactions and freak waves, J. Phys. Oceanogr., 33, 4, 863–8842.0.CO;2>CrossRefGoogle Scholar
Janssen, P., 2004, The Interaction of Ocean Waves and Wind, Cambridge, Cambridge University Press, 300 pp.CrossRefGoogle Scholar
Janssen, T. T., Herbers, T. H. C. and Battjes, J. A., 2004, A discrete spectral evolution model for nonlinear waves over 2D topography, Proc. 29th Int. Conf. Coastal Engineering (Lisbon), Singapore, World Scientific, pp. 119–131Google Scholar
Jeans, G., C. Primrose, N. Descusse, B. Strong and P. van Weert, 2003a, A comparison between directional wave measurements from the RDI Workhorse with waves and the Datawell directional Waverider, Proc. IEEE/OES 7th Working Conf. on Current Measurement Technology, pp. 148–151
Jeans, G., Bellamy, I., Vries, J. J. and Weert, P., 2003b, Sea trial of the new Datawell GPS directional Waverider, Proc. IEEE/OES 7th Working Conf. on Current Measurement Technology, pp. 145–147CrossRefGoogle Scholar
Jeffreys, H., 1925, On the formation of waves by wind, Proc. Roy. Soc. London, A, 107, 189–206CrossRefGoogle Scholar
Jeffreys, H. 1926, On the formation of waves by wind (second paper), Proc. Roy. Soc. London, A, 110, 241–247CrossRefGoogle Scholar
Jenkins, G. M. and Watts, D. G., 1968, Spectral Analysis, San Francisco, Holden-Day, CA, 525 pp.Google Scholar
Johnson, J. W., 1947, The refraction of surface waves by currents, Trans. Am. Geophys. Union, 28, 6, 867–874CrossRefGoogle Scholar
Johnson, R. R., E. P. D. Mansard and J. Ploeg, 1978, Effects of wave grouping on breakwater stability, Proc. 16thConf. Coastal Engineering (Hamburg), New York, ASCE, pp. 2228–2243
Jones, I. S. F. and Toba, Y. (eds.), 2001, Wind Stress over The Ocean, Cambridge, Cambridge University Press, 307 pp.CrossRefGoogle Scholar
Jonsson, I. G., 1966, Wave boundary layers and friction factors, Proc. 10thConf. Coastal Engineering (Tokyo), New York, ASCE, pp. 127–148Google Scholar
Jonsson, I. G. and Carlsen, N. A., 1976, Experimental and theoretical investigations in an oscillatory turbulent boundary layer, J. Hydraul. Res., IAHR, 14, 1, 45–60CrossRefGoogle Scholar
Jonsson, I. G., 1980, A new approach to oscillatory rough turbulent boundary layers, Ocean Engineering, 7, 1, 109–152CrossRefGoogle Scholar
Jonsson, I. G. and Wang, J. D., 1980, Current-depth refraction of water waves, Ocean Engineering, 7, 1, 153–171CrossRefGoogle Scholar
Jonsson, I. G., 1990, Wave-current interaction, in The Sea, eds. Méhauté, B. and Hanes, D., New York, John Wiley & Sons Inc., 9A, pp. 65–120Google Scholar
Kahma, K. K., 1981, A study of the growth of the wave spectrum with fetch, J. Phys. Oceanogr, 11, 11, 1503–15152.0.CO;2>CrossRefGoogle Scholar
Kahma, K. K. and Calkoen, C. J., 1992, Reconciling discrepancies in the observed growth of wind-generated waves, J. Phys. Oceanogr., 22, 12, 1389–14052.0.CO;2>CrossRefGoogle Scholar
Kahma, K. K. and H. Pettersson, 1994, Wave growth in a narrow fetch geometry, The Global Atmosphere and Ocean System, 2, 253–263
Kaihatu, J. M. and Kirby, J. T., 1995, Nonlinear transformation of waves in finite depth water, Phys. Fluids, 7, 8, 1903–1914CrossRefGoogle Scholar
Kaminsky, G. M. and Kraus, N. C., 1993, Evaluation of depth-limited wave breaking criteria, Proc. 2nd Int. Symp. Ocean Wave Measurement and Analysis WAVES 93 (New Orleans), New York, ASCE, pp. 180–193Google Scholar
Kamphuis, J. W., 2000, Introduction to Coastal Engineering and Management, Singapore, World Scientific, 16, 437 pp.CrossRefGoogle Scholar
Karlsson, T., 1969, Refraction of continuous ocean wave spectra, J. Waterways and Harbors Div., New York, ASCE, 95, WW4, 437–448
Katsaros, K. B. and Atatürk, S. S., 1991, Dependence of wave-breaking statistics on wind stress and wind wave development, Breaking Waves IUTAM Symp. (Sydney), eds. Banner, M. L. and Grimshaw, R. H. J., Berlin, Springer-Verlag, pp. 119–132Google Scholar
Kawai, S., Okada, K. and Toba, Y., 1977, Field data support of three-seconds power law and gu-σ-4-spectral form for growing wind waves, J. Oceanogr. Soc. Japan, 33, 3, 137–150CrossRefGoogle Scholar
Kawai, S., 1982, Structure of air flow separation over wind wave crests, Boundary-Layer Meteorol, 23, 503–521CrossRefGoogle Scholar
Kenyon, K. E. 1971, Wave refraction in ocean currents, Deep-Sea Res, 18, 1023–1034Google Scholar
Khandekar, M. L., 1989, Operational Analysis and Prediction of Ocean Wind Waves, New York, Springer-Verlag, 214 pp.Google Scholar
Kim, Y. C. and Powers, E. J., 1979, Digital bispectral analysis and its application to nonlinear wave interactions, IEEE Trans. Plasma Sci, PS-7, 2, 120–131CrossRefGoogle Scholar
Kim, Y. C., Beal, J. M., Powers, E. J. and Miksad, R. W., 1980, Bispectrum and nonlinear wave coupling, Phys. Fluids, 23, 2, 258–263CrossRefGoogle Scholar
Kimura, A., 1980, Statistical properties of random wave groups, Proc. 17thConf. Coastal Engineering (Sydney), New York, ASCE, pp. 2955–2973Google Scholar
Kimura, A. 1981, Joint distribution of the wave heights and periods of random sea waves, Coastal Engineering in Japan, 24, 77–92CrossRefGoogle Scholar
Kinsman, B., 1965, Wind Waves, Their Generation and Propagation on The Ocean Surface, Englewood Cliffs, NJ, Prentice-Hall, 676 pp.Google Scholar
Kirby, J. T., 1984, A note on linear surface wave-current interaction over slowly varying topography, J. Geophys. Res, 89, C1, 745–747CrossRefGoogle Scholar
Kirby, J. T. 1986, Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res., 91, C1, 933–952CrossRefGoogle Scholar
Kirby, J. T. 1990, Modelling shoaling directional wave spectra in shallow water, Proc. 22ndInt. Conf. Coastal Engineering (Delft), New York, ASCE, pp. 109–122
Kirby, J. T. and Kaihatu, J. M., 1996, Structure of frequency domain models for random waves breaking, Proc. 25thInt. Conf. Coastal Engineering(Orlando), New York, ASCE, pp. 1144–1155Google Scholar
Kitaigorodsk, S. A. ii, Krasitsk, V. P. ii and Zaslavsk, M. M. ii, 1975, On Phillips' theory of equilibrium range in the spectra of wind-generated gravity waves, J. Phys. Oceanogr., 5, 7, 410–4202.0.CO;2>CrossRefGoogle Scholar
Kitaigorodsk, S. A. ii, 1983, On the theory of the equilibrium range in the spectrum of wind-generated gravity waves, J. Phys. Oceanogr., 13, 5, 816–8272.0.CO;2>CrossRefGoogle Scholar
Kitano, T., Mase, H. and Kioka, W., 2001, Theory of significant wave period based on spectral integrals, Proc. 4th Int. Symp. Ocean Wave Measurement and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 414–423Google Scholar
Klopman, G. and M. J. F. Stive, 1989, Extreme waves and wave loading in shallow water, Proc. Workshop “Wave and Current Kinematics and Loading” (Paris), London, The Oil Industry International Exploration & Production Forum, Report No. 3.12/156, pp. 161–170
Kobayashi, T., A. Kawai, M. Koduka and T. Yasuda, 2001, Application of nautical radar to the field observation of waves and currents, Proc. 4th Int. Symp. Ocean Wave Measurement and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 76–85
Kofoed-Hansen, H. and Rasmussen, J. H., 1998, Modelling of nonlinear shoaling based on stochastic evolution equations, Coastal Engineering, 33, 203–232CrossRefGoogle Scholar
Komatsu, K. and Masuda, A., 1996, A new scheme of nonlinear energy transfer among wind waves: RIAM method — algorithm and performance, J. Oceanogr., 52, 4, 509–537CrossRefGoogle Scholar
Komen, G. J., Hasselmann, S. and Hasselmann, K., 1984, On the existence of a fully developed wind-sea spectrum, J. Phys. Oceanogr., 14, 8, 1271–12852.0.CO;2>CrossRefGoogle Scholar
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. and Janssen, P. A. E. M., 1994, Dynamics and Modelling of Ocean Waves, Cambridge, Cambridge University Press, 532 pp.CrossRefGoogle Scholar
Korteweg, D. J. and Vries, G., 1895, On the change of form of long waves advancing in a rectangular canal, and a new type of long stationary waves, Phil. Mag., Series 5, 39, 422–443CrossRefGoogle Scholar
Krogstad, H. E., S. F. Barstow, O. Haug, P. Ø. Markussen, G. Ueland and I. Rodriguez, 1997, SMART-800: a GPS based directional wave buoy, Proc. 3rd Int. Symp. Ocean Wave Measurement and Analysis WAVES 97 (Virginia Beach), Reston, VA, ASCE, pp. 1182–1195
Krogstad, H. E., Barstow, S. F., Aasen, S. E. and Rodriguez, I., 1999, Some recent develop-ments in wave buoy measurement technology, Coastal Engineering, 37, 309–329CrossRefGoogle Scholar
Kuik, A. J., Vledder, G. Ph. and Holthuijsen, L. H., 1988, A method for the routine analysis of pitch-and-roll buoy wave data, J. Phys. Oceanogr., 18, 7, 1020–10342.0.CO;2>CrossRefGoogle Scholar
Kuriyama, Y., 1994, Numerical model for longshore current distribution on a bar-trough beach, Proc. 24th Int. Conf. Coastal Engineering (Kobe), New York, ASCE, pp. 2237–2251
Kuwashima, S. and Hogben, N., 1986, The estimation of wave height and wind speed persistence statistics from cumulative probability distributions, Coastal Engineering, 9, 563–590CrossRefGoogle Scholar
Lai, R. J., Long, S. R. and Huang, N. E., 1989, Laboratory studies of wave-current interaction: kinematics of the strong interactions, J. Geophys. Res., 94, C11, 16 201–16 214CrossRefGoogle Scholar
Laitone, E. V., 1960, The second approximation to cnoidal and solitary waves, J. Fluid Mech., 9, 430–444CrossRefGoogle Scholar
Lacombe, H., 1951, The diffraction of a swell. A practical approximate solution and its justification, Proc. NBS Semicentennial Symp. on Gravity Waves, Washington, National Bureau of Standards, Circular 521, pp. 129–140Google Scholar
Lacombe, H. 1965, Cours d'océanographie physique, Paris, Gauthiers-Villars, 392 pp.Google Scholar
Lamb, H., 1932, Hydrodynamics, 6th edn, New York, Dover Publications, Inc., 738 pp.Google Scholar
Larson, T. R. and Wright, J. W., 1975, Wind-generated gravity-capillary waves: laboratory measurements of temporal growth rates using micro-wave backscatter, J. Fluid Mech., 70, 3, 417–436CrossRefGoogle Scholar
Larson, M., 1995, Model for decay of random waves in surf zone, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 121, 1, 1–12CrossRefGoogle Scholar
Lavrenov, I. V., 2003, Wind-waves in Oceans. Dynamics and Numerical Simulation, Berlin, Springer-Verlag, 376 pp.CrossRefGoogle Scholar
LeBlond, P. H. and Mysak, L. A., 1978, Waves in The Ocean, Amsterdam, Elsevier Scientific Publishing Company, 602 pp.Google Scholar
Leadbetter, M. R., Lindgren, G. and Rootzén, H., 1983, Extremes and Related Properties of Random Sequences and Processes, New York, Springer-Verlag, 336 pp.CrossRefGoogle Scholar
Lehner, S., J. Schulz-Stellenfleth, A. Niedermeier, J. Horstmann and W. Rosenthal, 2001, Extreme waves observed by synthetic aperture radar, Proc. 4th Int. Symp. Ocean Wave Measurement and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 125–134
LeMéhauté, B., 1962, On non-saturated breakers and the wave run-up, Proc. 8thConf. Coastal Engineering (Mexico City), Council on Wave Research, the Engineering Foundation, Berkeley, University of California, pp. 77–92Google Scholar
LeMéhauté, B. and Koh, R. C. Y., 1967, On the breaking of waves arriving at an angle to the shore, J. Hydraul. Res., IAHR, 5, 1, 67–88CrossRef
LeMéhauté, B., 1976, An Introduction to Hydrodynamics and Water Waves, New York, Springer-Verlag, 315 pp.Google Scholar
LeMéhauté, B. and Wang, J. D., 1982, Wave spectrum changes on sloped beach, J. Waterway, Port, Coastal and Ocean Div., New York, ASCE, 108, 1, 33–47Google Scholar
Lewis, A. W., and Allos, R. N., 1990, JONSWAP's parameters: sorting out the inconsistencies, Ocean Engineering, 17, 4, 409–415CrossRefGoogle Scholar
Li, C. W. and Mao, M., 1992, Spectral modelling of typhoon-generated waves in shallow waters, J. Hydraul. Res., IAHR, 30, 5, 611–622CrossRefGoogle Scholar
Lighthill, J., 1978, Waves in Fluids, Cambridge, Cambridge University Press, 504 pp.Google Scholar
Lin, P. and Liu, P. L.-F., 1999, Free surface tracking methods and their applications to wave hydrodynamics, Advances in Coastal and Ocean Engineering, ed. Liu, P. L.-F., Singapore, World Scientific, 5, pp. 213–240Google Scholar
Liu, P. C., 1994, Wavelet spectrum analysis and ocean wind waves, in Wavelets in Geophysics, eds. Foufoula-Georgiou, E. and Kumar, P., SanDiego, CA, Academic Press, pp. 151–166Google Scholar
Liu, P. C. and N. Mori. 2000, Characterizing freak waves with wavelet transform analysis, in Rogue Waves 2000, eds. M. Olagnon and G. A. Athanassoulis, Plouzané, IFREMER, pp. 151–155
Liu, P. C. and Babanin, A. V., 2004, Using wavelet spectrum analysis to resolve breaking events in the wind wave time series, Annales Geophysicae, 22, 3335–3345CrossRefGoogle Scholar
Liu, P. L.-F., Yoon, S. B. and Kirby, J. T., 1985, Nonlinear refraction-diffraction of waves in shallow water, J. Fluid Mech., 153, 185–201CrossRefGoogle Scholar
Liu, P. L.-F., 1990, Wave transformation, in The Sea, eds. LeMéhaute, B. and Hanes, D., New York, John Wiley & Sons Inc., 9A, pp. 27–63Google Scholar
Liu, P. L.-F. 2001, Numerical modelling of breaking waves in nearshore environment, Proc. 4th Int. Symp. Ocean Wave Measurement and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 1–12Google Scholar
Longuet-Higgins, M. S., 1952, On the statistical distributions of the heights of sea waves, J. Mar. Res., 11, 3, 245–265Google Scholar
Longuet-Higgins, M. S. 1957, The statistical analysis of a random, moving surface, Phil. Trans. Roy. Soc. London, A, 250, 321–387CrossRefGoogle Scholar
Longuet-Higgins, M. S. and Stewart, R. W., 1960, Changes in the form of short gravity waves on long waves and tidal currents, J. Fluid Mech., 8, 4, 565–583CrossRefGoogle Scholar
Longuet-Higgins, M. S. and Stewart, R. W. 1961, The changes in amplitude of short gravity waves on steady non-uniform currents, J. Fluid Mech., 10, 3, 529–549CrossRefGoogle Scholar
Longuet-Higgins, M. S. and Stewart, R. W. 1962, Radiation stress and mass transport in gravity waves, with applications to “surf beats”, J. Fluid Mech., 13, 481–504CrossRefGoogle Scholar
Longuet-Higgins, M. S. and Stewart, R. W. 1963, A note on wave set-up, J. Mar. Res., 21, 4–10Google Scholar
Longuet-Higgins, M. S., 1963, The effect of nonlinearities on statistical distribution in the theory of sea waves, J. Fluid Mech., 17, 459–480CrossRefGoogle Scholar
Longuet-Higgins, M. S., Cartwright, D. E. and Smith, N. D., 1963, Observations of the directional spectrum of sea waves using the motions of a floating buoy, in Ocean Wave Spectra, New York, Prentice Hall, pp. 111–136Google Scholar
Longuet-Higgins, M. S. and Stewart, R. W., 1964, Radiation stresses in water waves; physical discussion, with applications, Deep-Sea Res., 11, 4, 529–562Google Scholar
Longuet-Higgins, M. S., 1969, On wave breaking and the equilibrium spectrum of wind-generated waves, Proc. Roy. Soc. London A, 310, 151–159CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1973, The mechanics of the surfzone, Proc. 13th Int. Congress of Theoretical and Applied Mechanics, eds. Becker, E. and Mikhailov, G. K., Moscow, Springer-Verlag, pp. 213–228Google Scholar
Longuet-Higgins, M. S. 1975, On the joint distribution of the periods and amplitudes of sea waves, J. Geophys. Res., 80, 18, 2688–2693CrossRefGoogle Scholar
Longuet-Higgins, M. S. and Cokelet, E. D., 1976, The deformation of steep surface waves on water, I. A numerical method of computation, Proc. Roy. Soc. London, A, 350, 1–26CrossRefGoogle Scholar
Longuet-Higgins, M. S., 1976, On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: a simplified model, Proc. Roy. Soc. London, A, 347, 311–328CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1980, On the distribution of the heights of sea waves: some effects of nonlinearity and finite band-width, J. Geophys. Res., 85, C3, 1519–1523CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1983, On the joint distribution of wave periods and amplitudes in a random wave field, Proc. Roy. Soc. London, A, 389, 241–258CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1984, Statistical properties of wave groups in a random sea, Phil. Trans. Roy. Soc. London, A, 312, 219–250CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1987, A stochastic model of sea-surface roughness, I. Wave crests, Proc. Roy. Soc. London, A, 410, 19–34CrossRefGoogle Scholar
Luo, W. and Monbaliu, J., 1994, Effects of the bottom friction formulation on the energy balance for gravity waves in shallow water, J. Geophys. Res., 99, C9, 18 501– 18 511CrossRefGoogle Scholar
Lygre, A. and Krogstad, H. E., 1986, Maximum entropy estimation of the directional distribution in ocean wave spectra, J. Phys. Oceanogr., 16, 12, 2052–20602.0.CO;2>CrossRefGoogle Scholar
Maa, J. P.-Y., Hsu, T.-W. and Lee, D.-Y., 2002, The RIDE model: an enhanced computer program for wave transformation, Ocean Engineering, 29, 11, 1441–1458CrossRefGoogle Scholar
MacLaren Plansearch Ltd., 1991, Wind and Wave Climate Atlas of Canada, Halifax, MacLaren Plansearch Ltd
Madsen, O. S., Y.-K. Poon and H. C. Graber, 1988, Spectral wave attenuation by bottom friction: theory, Proc. 21stInt. Conf. Coastal Engineering (Malaga), New York, ASCE, pp. 492–504
Madsen, P. A. and S⊘rensen, O. R., 1992, A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2: a slowly-varying bathymetry, Coastal Engineering, 18, 3–4, 183–205CrossRefGoogle Scholar
Madsen, P. A. and S⊘rensen, O. R. 1993, Bound waves and triad interactions in shallow water, Ocean Engineering, 20, 4, 359–388CrossRefGoogle Scholar
Madsen, P. A. and Schäffer, H. A., 1999, A review of Boussinesq-type equations for surface gravity waves, in Advances in Coastal and Ocean Engineering, ed. Liu, P. L.-F., Singapore, World Scientific, 5, pp. 1–94Google Scholar
Mallat, S., 1998, A Wavelet Tour of Signal Processing, San Diego, CA, San Diego Academic Press, 577 pp.Google Scholar
Mardia, K. V., 1972, Statistics of directional data, in Probability and Mathematical Statistics, eds. Birnbaum, Z. W. and Lukacs, E., London, Academic Press, 357 pp.Google Scholar
Mase, H. and Y. Iwagaki, 1982, Wave height distributions and wave grouping in surf zone, Proc. 18thConf. Coastal Engineering (Cape Town), New York, ASCE, pp. 58–76
Mase, H. and Kirby, J. T., 1992, Hybrid frequency-domain KdV equation for random wave transformation, Proc. 23rdInt. Conf. Coastal Engineering (Venice), New York, ASCE, pp. 474–487Google Scholar
Mase, H., Takayama, T. and Kitano, T., 1997, Transformation of double peak spectral waves, Proc. 3rd Int. Symp. Ocean Wave Measurement and Analysis WAVES 97 (Virginia Beach), Reston, VA, ASCE, pp. 232–242Google Scholar
Massel, S. R., 1996, Ocean Surface Waves: Their Physics and Prediction, Advanced Series on Ocean Engineering, Singapore, World Scientific, 11, 491 pp.Google Scholar
Mastenbroek, C., Burgers, G. and Janssen, P. A. E. M., 1993, The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer, J. Phys. Oceanogr., 23, 8, 1856–18662.0.CO;2>CrossRefGoogle Scholar
Masuda, A. and Kuo, Y. Y., 1981, Bispectra for the surface displacement of random gravity waves in deep water, Deep-Sea Res., 28A, 3, 2223–237Google Scholar
Mathiesen, M., Hawkes, P., Martin, M. J., Thompson, E., Goda, Y., Mansard, E., Peltier, E. and Vledder, G., 1994, Recommended practice for extreme wave analysis, J. Hydraulic Res., IAHR, 32, 6, 803–814CrossRefGoogle Scholar
McLeish, W. and Ross, D. B., 1983, Imaging radar observations of direction properties of ocean waves, J. Geophys. Res., 88, C7, 4407–4419CrossRefGoogle Scholar
Mei, C. C., 1985, Resonant reflection of surface water waves by periodic sandbars, J. Fluid Mech., 152, 315–335CrossRefGoogle Scholar
Mei, C. C. 1989, The Applied Dynamics of Ocean Surface Waves, Singapore, World Scientific, 740 pp.Google Scholar
Mei, C. C., M. Stiassnie and D. K.-P. Yue, 2006, Theory and Applications of Ocean Surface Waves, Part 1: Linear Aspects, Part 2: Nonlinear Aspects, Advanced Series on Ocean Engineering, 2, Singapore, World Scientific, 23, 1071 pp
Mendez, F. J., Losada, I. J. and Medina, R., 2004, Depth-limited distribution of the highest wave in a sea state, Proc. 29thInt. Conf. Coastal Engineering (Lisbon), Singapore, pp. 1022–1031Google Scholar
Miche, R., 1944, Mouvements ondulatoires des mers en profondeur constante ou décroissante, Annales des ponts et chaussées, 114, 369–406Google Scholar
Miles, J. W., 1957, On the generation of surface waves by shear flows, J. Fluid Mech., 3, 185–204CrossRefGoogle Scholar
Miles, J. W. 1960, On the generation of surface waves by turbulent shear flow, J. Fluid Mech., 7, 469–478CrossRefGoogle Scholar
Miller, H. C. and Vincent, C. L., 1990, FRF spectrum: TMA with Kitaigorodskii's f4 scaling, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 116, 1, 57–78CrossRefGoogle Scholar
Mitsuyasu, H. 1968, On the growth of spectrum of wind-generated waves (I), Reports of Research Institute for Applied Mechanics, Kyushu University, 16, 55, 459– 482Google Scholar
Mitsuyasu, H. 1969, On the growth of spectrum of wind-generated waves (II), Reports of Research Institute for Applied Mechanics, Kyushu University, 17, 59, 235–248Google Scholar
Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T. and Rikiishi, K., 1975, Observations of the directional spectrum of ocean waves using a cloverleaf buoy, J. Phys. Oceanogr., 5, 10, 750–7602.0.CO;2>CrossRefGoogle Scholar
Mitsuyasu, H., 1977, Measurement of the high-frequency spectrum of ocean surface waves, J. Phys. Oceanogr., 7, 6, 882–8912.0.CO;2>CrossRefGoogle Scholar
Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T. and Rikiishi, K., 1980, Observation of the power spectrum of ocean waves using a cloverleaf buoy, J. Phys. Oceanogr., 10, 2, 286–2962.0.CO;2>CrossRefGoogle Scholar
Monahan, E. C. and Mac, G. Noicaill (eds.), 1986, Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, Dordrecht, D. Reidel Publishing Company, 294 pp.Google Scholar
Monbaliu, J., Padilla-Hernández, R., Hargreaves, J. C., Albiach, J. C. Carretero, Luo, W., Sclavo, M. and Günther, H., 2000, The spectral wave model, WAM, adapted for applications with high spatial resolution, Coastal Engineering, 41, 41–62CrossRefGoogle Scholar
Muir, L. R. and El-Shaarawi, A. H., 1986, On the calculation of extreme wave heights: a review, Ocean Engineering, 13, 1, 93–118CrossRefGoogle Scholar
Munk, W. H. and Traylor, M. A., 1947, Refraction of ocean waves: a process linking underwater topography to beach erosion, J. Geol., LV, 1, 1–26CrossRefGoogle Scholar
Munk, W. H., 1949a, The solitary wave theory and its applications to surf problems, in Ocean Surface Waves, Annals New York Acad. Sci, 51, 3, 376–424Google Scholar
Munk, W. H. 1949b, Surf beats, Trans. Am. Geophys. Union, 30, 6, 849–854Google Scholar
Munk, W. H. 1950, Origin and generation of waves, Proc. 1stConf. Coastal Engineering (Long Beach), New York, ASCE, pp. 1–4Google Scholar
Munk, W. H. and Arthur, R. S., 1952, Wave intensity along a refracted ray, Proc. NBS Semicentennial Symp. on Gravity Waves, Washington, National Bureau of Standards, Circular 521, pp. 95–108Google Scholar
Munk, W. H., Miller, G. R., Snodgrass, F. E. and Barber, N. F., 1963, Directional recording of swell from distant storms, Phil. Trans. Roy. Soc. London, A, 255, 505–584CrossRefGoogle Scholar
Nadaoka, K., Beji, S. and Nakagawa, Y., 1997, A fully dispersive weakly nonlinear model for water waves, Proc. Roy. Soc. London, A, 453, 303–318CrossRefGoogle Scholar
Nagai, T., Ogawa, H., Terada, Y., Kato, T. and Kudaka, M., 2004, GPS buoy application to offshore wave, tsunami and tide observation, Proc. 29thInt. Conf. Coastal Engineering (Lisbon), Singapore, World Scientific, pp. 1093–1105Google Scholar
Nakamura, S. and K. Katoh, 1992, Generation of infra-gravity waves in breaking process of wave groups, Proc. 23rdInt. Conf. Coastal Engineering (Venice), New York, ASCE, pp. 990–1003
Nelson, R. C., 1987, Design wave heights on very mild slopes — an experimental study, Civil Engineering Trans., Institution of Engineers Australia, 29, 157–161Google Scholar
Nelson, R. C. 1994, Depth limited wave heights in very flat regions, Coastal Engineering, 23, 43–59CrossRefGoogle Scholar
Nelson, R. C. 1997, Height limits in top down and bottom up wave environments, Coastal Engineering, 32, 247–254CrossRefGoogle Scholar
Nepf, H. M., Wu, C. H. and Chan, E. S., 1998, A comparison of two- and three-dimensional wave breaking, J. Phys. Oceanogr., 28, 1496–15102.0.CO;2>CrossRefGoogle Scholar
Neu, H. J. A., 1984, Interannual variations and longer-term changes in the sea state of the North Atlantic from 1970 to 1982, J. Geophys. Res., 89, C4, 6397–6402CrossRefGoogle Scholar
Neumann, G. and Pierson, W. J. Jr, 1966, Principles of Physical Oceanography, Englewood Cliffs, NJ, Prentice-Hall, Inc., 545 pp.Google Scholar
NMRI, 2005, Statistical Database of Winds and Waves around Japan, Tokyo, Seakeeping Group, Marine Safety Department, National Maritime Research Institute of Japan, http://www.nmri.go.jp/wwjapan/namikaze_main_e.html
Nordenstr⊘m, N., 1969, Methods for Predicting Long Term Distribution of Wave Loads and Probability of Failure for Ships. Appendix II, Relations between Visually Estimated and Theoretical Wave Heights and Periods, Oslo, Det Norske Veritas, Research Department, Report No. 69-22-S
Norheim, C. A., Herbers, T. H. C. and Elgar, S., 1998, Nonlinear evolution of surface wave spectra on a beach, J. Phys. Oceanogr., 28, 7, 1534–15512.0.CO;2>CrossRefGoogle Scholar
Nwogu, O., 1993, Alternative form of Boussinesq equations for nearshore wave propagation, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 119, 6, 618–638CrossRefGoogle Scholar
Nwogu, O. 1994, Nonlinear evolution of directional wave spectra in shallow water, Proc. 24thInt. Conf. Coastal Engineering (Kobe), New York, ASCE, pp. 467–481Google Scholar
Ochi, M. K. and Tsai, C-H., 1983, Prediction of occurrence of breaking waves in deep water, J. Phys. Oceanogr., 13, 11, 2008–20192.0.CO;2>CrossRefGoogle Scholar
Ochi, M. K. and Wang, W.-C., 1984, Non-Gaussian characteristics of coastal waves, Proc. 19thInt. Conf. Coastal Engineering (Houston), New York, ASCE, pp. 516–531Google Scholar
Ochi, M. K., 1992, New approach for estimating the severest sea state from statistical data, Proc. 23rdInt. Conf. Coastal Engineering, (Venice), New York, ASCE, pp. 512–525Google Scholar
Ochi, M. K. 1998, Ocean Waves, The Stochastic Approach, Cambridge, Cambridge University Press, 319 pp.CrossRefGoogle Scholar
Ochi, M. K. 2003, Hurricane-generated Seas, Elsevier Ocean Engineering Book Series, eds. Bhattacharyya, R. and McCormick, M. E., Amsterdam, Elsevier, 8, 140 pp.Google Scholar
Oh, S.-H., Mizutani, N., Hashimoto, N. and Suh, K.-D., 2004, Laboratory observation of breaking criteria of wind-generated deep water waves, Proc. 29thInt. Conf. Coastal Engineering (Lisbon), Singapore, World Scientific, pp. 428–440Google Scholar
Onorato, M., Osborne, A. R., Serio, M. and Bertone, S., 2001, Freak waves in random oceanic sea states, Phys. Rev. Lett., 86, 25, 5831–5834CrossRefGoogle ScholarPubMed
Onorato, M., Osborne, A. R. and Serio, M., 2002, Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, 14, L25-L28CrossRefGoogle Scholar
Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C. and Stansberg, C. T., 2004, Observations of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments, Phys. Rev., E, 70 (2), 6, 1–4Google ScholarPubMed
Reilly, O' W. C. and Guza, R. T., 1991, Comparison of spectral refraction and refraction-diffraction wave models. J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 117, 3, 199–215CrossRefGoogle Scholar
Osborne, A. R., Onorato, M. and Serio, M., 2000, The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains, Phys. Lett., A 275, 386–393CrossRefGoogle Scholar
Padilla-Hernández, R. and Monbaliu, J., 2001, Energy balance of wind waves as a function of the bottom friction formulation, Coastal Engineering, 43, 131–148CrossRefGoogle Scholar
Pandey, M. D., Gelder, P. H. A. J. M. and Vrijling, J. K., 2004, Dutch case studies of the estimation of extreme quantiles and associated uncertainty by bootstrap simulations, Environmetrics, 15, 687–699CrossRefGoogle Scholar
Pawka, S. S., 1983, Island shadows in wave directional spectra, J. Geophys. Res., 88, C4, 2579–2591CrossRefGoogle Scholar
Peirson, W. L. and Belcher, S. E., 2004, Growth response of waves to the wind stress, Proc. 29thInt. Conf. Coastal Engineering (Lisbon), Singapore, World Scientific, pp. 667–676Google Scholar
Penney, W. G. and Price, A. T., 1952, The diffraction theory of sea waves and the shelter afforded by breakwaters, Phil. Trans. Roy. Soc. London, A, 244, 236–253CrossRefGoogle Scholar
Peregrine, D. H., 1967, Long waves on a beach, J. Fluid Mech., 27, 4, 815–827CrossRefGoogle Scholar
Peregrine, D. H. 1976, Interaction of water waves and currents, Adv. Appl. Mech., 16, 9–117CrossRefGoogle Scholar
Peregrine, D. H. 1990, Computations of breaking waves, in Water Wave Kinematics, eds. T⊘rum, A. and Gudmestad, O. T., Amsterdam, Kluwer Academic Publishers, pp. 475–490Google Scholar
Peregrine, D. H. 1999, Large-scale vorticity generation by breakers in shallow and deep water, Eur. J. Mech. B/Fluids, 18, 3, 403–408CrossRefGoogle Scholar
Perrie, W. and Zakharov, V., 1999, The equilibrium range cascades of wind-generated waves, Eur. J. Mech. B/Fluids, 18, 3, 365–371CrossRefGoogle Scholar
Peters, D. J., C. J. Shaw, C. K. Grant, J. C. Heideman and D. Szabo, 1993, >Modelling the North Sea through the North Sea Storm Study (NESS), Proc. 25thAnnual Offshore Technology Conf., Report No. OTC 7130, pp. 479–493
Petruaskas, C. and P. M. Aagaard, 1970, Extrapolation of historical storm data for estimating design wave heights, Proc. 2nd Annual Offshore Technology Conf., Report No. OTC1190, pp. 409–427
Phillips, O. M., 1957, On the generation of waves by turbulent wind, J. Fluid Mech., 2, 417–445CrossRefGoogle Scholar
Phillips, O. M. 1958, The equilibrium range in the spectrum of wind-generated waves, J. Fluid Mech., 4, 426–434CrossRefGoogle Scholar
Phillips, O. M. 1960, On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions, J. Fluid Mech., 9, 193–217CrossRefGoogle Scholar
Phillips, O. M. 1977, The Dynamics of The Upper Ocean, Cambridge, Cambridge University Press, 336 pp.Google Scholar
Phillips, O. M. 1981, Wave interactions — the evolution of an idea, J. Fluid Mech., 106, 215–227CrossRefGoogle Scholar
Phillips, O. M. 1985, Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, J. Fluid Mech., 156, 505–531CrossRefGoogle Scholar
Pierson, W. J. Jr., J. J. Tuttell and J. A. Wooley, 1952, The theory of the refraction of a short crested Gaussian sea surface with application to the northern New Jersey coast, Proc. 3rdConf. Coastal Engineering (Cambridge, MA), New York, ASCE, pp. 86–108
Pierson, W. J., G. Neumann and R. W. James, 1955, Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics, Washington, U.S. Navy Hydrographic Office, Publication No. 603 (reprinted 1960), 284 pp
Pierson, W. J. and Moskowitz, L., 1964, A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, J. Geophys. Res., 69, 24, 5181–5190CrossRefGoogle Scholar
Pierson, W. J., Tick, L. J. and Baer, L., 1966, Computer based procedures for preparing global wave forecasts and wind field analysis capable of using wave data obtained by a spacecraft, Proc. 6th Naval Hydrodynamics Symp., Washington, Office of Naval Research, article 20–1, 42 pp.Google Scholar
Piest, J., 1965, Seegangsbestimmung und Seegangsrefraktion in einem Meer mit nicht ebenen Boden — eine theoretische Untersuchung, Deutsch. Hydrogr. Z., Sonderdruck, 18, 6, 253–260CrossRefGoogle Scholar
Plant, W. J., 1982, A relationship between wind stress and wave slope, J. Geophys. Res., C87, NC3, 1961–1967CrossRefGoogle Scholar
Pontes, M. T., G. A. Athanassoulis, S. Barstow, L. Cavaleri, B. Holmes, D. Mollison and H. Oliviera Pires, 1996, WERATLAS — Atlas of Wave Energy Resource in Europe, Lisbon, INETI
Price, W. G. and Bishop, R. E. D., 1974, Probabilistic Theory of Ship Dynamics, London, Chapman and Hall, 311 pp.Google Scholar
Putnam, J. A. and Johnson, J. W., 1949, The dissipation of wave energy by bottom friction, Trans. Am. Geophys. Union, 30, 1, 67–74CrossRefGoogle Scholar
Radder, A. C., 1979, On the parabolic equation method for water-wave propagation, J. Fluid Mech., 95, 1, 159–176CrossRefGoogle Scholar
Rahman, M., 1995, Water Waves: Relating Modern Theory to Advanced Engineering Applications, Oxford, Clarendon Press, 343 pp.Google Scholar
Raichlen, F., 1993, Waves propagating on an adverse jet, Proc. 2nd Int. Symp. Ocean Wave Measurement and Analysis WAVES 93 (New Orleans), New York, ASCE, pp. 657–670Google Scholar
Rasmussen, J. H., 1998, Deterministic and stochastic modelling of surface gravity waves in finite depth, Unpublished Ph.D. thesis, Lyngby, Technical University of Denmark, Department of Hydrodynamics and Water Resources (ISVA), 245 pp
Raubenheimer, B., Guza, R. T. and Elgar, S., 1996, Wave transformation across the inner surf zone, J. Geophys. Res., 101, C11, 25 589–25 597CrossRefGoogle Scholar
Rayleigh, Lord, 1880, On the resultant of a large number of vibrations of the same pitch and of arbitrary phase, Phil. Mag., Series 5, 10, 60, 73–78CrossRefGoogle Scholar
Repko, A., Gelder, P. H. A. J. M., Voortman, H. G. and Vrijling, J. K., 2000, Bivariate statistical analysis of wave climates, Proc. 27thInt. Conf. Coastal Engineering (Sydney), Reston, VA, ASCE, pp. 583–596Google Scholar
Resch, F. J., Darrozes, J. S. and Afèti, G. M., 1986, Marine liquid aerosol production from bursting air bubbles, J. Geophys. Res., 91, C1, 1019–1029CrossRefGoogle Scholar
Resio, D. T., 1987, Shallow-water waves. I: theory, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 113, 3, 264–281CrossRefGoogle Scholar
Resio, D. T. 1988, Shallow-water waves. II: data comparison, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 114, 1, 50–65CrossRefGoogle Scholar
Resio, D. T. and Perrie, W., 1991, A numerical study of nonlinear energy fluxes due to wave-wave interactions. Part 1: methodology and basic results, J. Fluid Mech., 223, 609–629CrossRefGoogle Scholar
Resio, D. T., Swail, V. R., Jensen, R. E. and Cardone, V. J., 1999, Wind speed scaling in fully developed seas, J. Phys. Oceanogr., 29, 8, 1801–18112.0.CO;2>CrossRefGoogle Scholar
Resio, D. T., Phil, J. H., Tracy, B. A. and Vincent, C. L., 2001, Nonlinear fluxes and the finite depth equilibrium range in wave spectra, J. Geophys. Res., 106, C4, 6985–7000CrossRefGoogle Scholar
Resio, D. T., Long, C. E. and Vincent, C. L., 2004, Equilibrium-range constant in wind-generated wave spectra, J. Geophys. Res., 109, C01018, doi:10.1029/2003JC001788 (14 pp.)CrossRefGoogle Scholar
Rice, S. O., 1944, Mathematical analysis of random noise, Bell System Technol. J., 23, 282–332CrossRefGoogle Scholar
Rice, S. O. 1945, Mathematical analysis of random noise, Bell System Technol. J., 24, 46–156CrossRefGoogle Scholar
Rice, S. O. 1954, Mathematical analysis of random noise, in Selected Papers on Noise and Stochastic Processes, ed. Wax, N., New York, Dover Publications Inc., pp. 133–294Google Scholar
Ris, R. C. and Holthuijsen, L. H., 1996, Spectral modelling of current induced wave-blocking, Proc. 25thInt. Conf. Coastal Engineering (Orlando), New York, ASCE, pp. 1247– 1254Google Scholar
Rivero, F. J., Arcilla, A. S. and Carci, E., 1997, An analysis of diffraction in spectral wave models, Proc. 3rd Int. Symp. Ocean Wave Measurement and Analysis WAVES 97 (Virginia Beach), Reston, VA, ASCE, pp. 431–445Google Scholar
Roelvink, J. A., 1993, Dissipation in random wave groups incident on a beach, Coastal Engineering, 19, 127–150CrossRefGoogle Scholar
Rogers, W. E., Kaihatu, J. M., Petit, H. A. H., Booij, N. and Holthuijsen, L. H., 2002, Diffusion reduction in an arbitrary scale third generation wind wave model, Ocean Engineering, 29, 11, 1357–1390CrossRefGoogle Scholar
Rogers, B. D. and Dalrymple, R. A., 2004, SPH modelling of breaking waves, Proc. 29thInt. Conf. Coastal Engineering (Lisbon), Singapore, World Scientific, pp. 415–427Google Scholar
Ross, D. B., Cardone, V. J. and Conaway, J. W., 1970, Laser and microwave observations of sea-surface conditions for fetch-limited 17- to 25-m/s winds, IEEE Trans. Geosci. Electronics, GE-8, 4, 326–336CrossRefGoogle Scholar
Ross, D. B. and Cardone, V., 1974, Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed, J. Geophys. Res., 79, 3, 444–452CrossRefGoogle Scholar
Russell, T. L., 1963, A step-type recording wave gage, Proc. Conf. Ocean Wave Spectra, Englewood Cliffs, NJ, Prentice Hall Inc., pp. 251–257Google Scholar
Rye, H., 1974, Wave group formation among storm waves, Proc. 14thConf. Coastal Engineering (Copenhagen), New York, ASCE, pp. 164–183Google Scholar
Sainflou, G., 1928, Essai sur des digues maritimes verticales, Annales des ponts et chaussées, 98, 4, 5–48Google Scholar
Sakai, T. and Battjes, J. A., 1980, Wave shoaling calculated from Cokelet's theory, Coastal Engineering, 4, 65–84CrossRefGoogle Scholar
Sakai, T., Koseki, M. and Iwagaki, Y., 1983, Irregular wave refraction due to current, J. Hydraul. Eng., New York, ASCE, 109, 9, 1203–1215CrossRefGoogle Scholar
Sakai, S. and Saeki, H., 1984, Effects of opposing current on wave transformation on a sloping bed, Proc. 19thInt. Conf. Coastal Engineering (Houston), New York, ASCE, pp. 1132–1148Google Scholar
Salih, B. A., Burrows, R. and Tickell, R. G., 1988, Storm statistics in the North Sea, Proc. 21stInt. Conf. Coastal Engineering (Malaga), New York, ASCE, pp. 956–970Google Scholar
Sallenger, A. H.Jr., P. C. Howard, Fletcher, C. H. and Howd, P. A., 1983, A system for measuring bottom profile, waves and currents in the high-energy nearshore environment, Mar. Geol., 51, 63–76CrossRefGoogle Scholar
Sand, S. E., Ottesen-Hansen, N. E., Klinting, P., Gudmestad, O. T. and Sterndorff, M. J., 1990, Freak wave kinematics, in Water Wave Kinematics, eds. T⊘rum, A. and Gudmestad, O. T., Dordrecht, Kluwer Academic Publishers, pp. 535–549Google Scholar
Sanders, J. W., 1976, A growth-stage scaling model for the wind-driven sea, Deutsch. Hydrogr Z., 29, 4, 136–161CrossRefGoogle Scholar
Sasaki, W., Iwasaki, I., Matsuura, T., Iizuka, S. and Watabe, I., 2005. Changes in wave climate off Hiratsuka, Japan, as affected by storm activity over the western North Pacific, J. Geophys. Res., 110, C09008, doi: 10.1029/2004 JC002730CrossRefGoogle Scholar
Sawaragi, T, 1995, Coastal Engineering — Waves, Beaches, Wave-Structure Interactions, Amsterdam, Elsevier, 479 pp.Google Scholar
Schule, J. J., Simpson, L. S. and DeLeonibus, P. S., 1971, A study of fetch-limited wave spectra with an airborne laser, J. Geophys. Res., 76, 18, 4160–4171CrossRefGoogle Scholar
Schulz-Stellenfleth, J. and Lehner, S., 2004, Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data, IEEE Trans. Geosci. Remote Sensing, GRS-42, 6, 1149–1160CrossRefGoogle Scholar
Schumann, E. H., 1976, Changes in energy of surface gravity waves in the Agulhas Current, Deep-Sea Res., 23, 6, 509–518Google Scholar
Seelig, W. N. and J. P. Ahrens, 1981, Estimation of Wave Reflection and Energy Dissipation Coefficients for Beaches, Revetments, and Breakwaters, Technical Paper No. 81–1, Ft. Belvoir, U.S. Army Corps of Engineers, Coastal Engineering Research Center
Sénéchal, N., Bonneton, P. and Dupuis, H., 2001, Generation of secondary waves due to wave propagation over a bar: a field investigation, Proc. 4th Int. Symp. Ocean Wave Measurement and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 764–772Google Scholar
Seymour, R. J., 1977, Estimating wave generation on restricted fetches, J. Waterway, Port, Coastal and Ocean Div., ASCE, 103, WW2, 251–264Google Scholar
Shemdin, O. H. and Hsu, E. Y., 1967, Direct measurements of aerodynamic pressure above a simple progressive gravity wave, J. Fluid Mech., 30, 2, 403–416CrossRefGoogle Scholar
Shemdin, O., Hasselmann, K., Hsiao, S. V. and Herterich, K., 1977, Nonlinear and linear bottom interaction effects in shallow water, Proc. NATO Conf. on Turbulent Fluxes through the Sea Surface, Wave Dynamics, and Prediction, New York, Plenum Press, pp. 347–372Google Scholar
Sheremet, A. and Stone, G. W., 2003, Observations of nearshore wave dissipation over muddy sea beds, J. Geophys. Res., 108, C11, 3357CrossRefGoogle Scholar
Shum, K. T. and Melville, W. K., 1984, Estimates of the joint statistics of amplitudes and periods of ocean waves using an integral transform technique, J. Geophys. Res., 89, C4, 6467–6476CrossRefGoogle Scholar
Singleton, R. C., 1969, An algorithm for computing the mixed-radix fast Fourier transform, IEEE Trans. Audio Electro-acoustics, AU-17, 2, 93–103CrossRefGoogle Scholar
Skjelbreia, L. and Hendrickson, J. A., 1960, Fifth order gravity wave theory, Proc. 7thConf. Coastal Engineering, Berkeley, CA, Council on Wave Research, Engineering Foundation, University of California, pp. 184–196Google Scholar
Skourup, J., Hansen, N.-E. O. and Andreasen, K. K., 1997, Non-Gaussian extreme waves in the central North Sea, J. Offshore Mechanics and Arctic Engineering, ASME, 119, 3, 146–150CrossRefGoogle Scholar
Skovgaard, O. and Petersen, M. H., 1977, Refraction of cnoidal waves, Coastal Engineering, 1, 43–61CrossRefGoogle Scholar
Snodgrass, F. E., Groves, G. W., Hasselmann, K. F., Miller, G. R., Munk, W. H. and Powers, W. H., 1966, Propagation of ocean swell across the Pacific, Phil. Trans. Roy. Soc. London, A, 259, 431–497CrossRefGoogle Scholar
Smith, J. M. and Vincent, C. L., 1992, Shoaling and decay of two wave trains on beach, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 118, 5, 517–533CrossRefGoogle Scholar
Smith, J. M., Bermudez, H. E. and Ebersole, B. A., 2000, Modelling waves at Willapa, Washington, Proc. 27thInt. Conf. Coastal Engineering (Sydney), Reston, VA, ASCE, pp. 826–839Google Scholar
Smith, J. M., 2001, Breaking in a spectral wave model, Proc. 4th Int. Symp. Ocean Wave Measurement and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 1022–1031Google Scholar
Smith, J. M. and Vincent, C. L., 2002, Application of spectral equilibrium ranges in the surf zone, Proc. 28thInt. Conf. Coastal Engineering (Cardiff), Singapore, World Scientific, pp. 269–279Google Scholar
Smith, J. M. and Vincent, C. L. 2003, Equilibrium ranges in surf zone wave spectra, J. Geophys. Res., 108, C11, 3366, doi: 1029/2003 JC001930CrossRefGoogle Scholar
Smith, J. M., 2004, Shallow-water spectral shapes, Proc. 29thInt. Conf. Coastal Engineering (Lisbon), Singapore, World Scientific, pp. 206–217Google Scholar
Snyder, R. L., Dobson, F. W., Elliott, J. A. and Long, R. B., 1981, Array measurement of atmospheric pressure fluctuations above surface gravity waves, J. Fluid Mech., 102, 1–59CrossRefGoogle Scholar
Soares, C. G., 2003, Probabilistic models of waves in the coastal zone, in Advances in Coastal Modeling, ed. Lakhan, C., Amsterdam, Elsevier Science, pp. 159–187Google Scholar
Sobey, R. J., 1986, Wind-wave prediction, Ann. Rev. Fluid Mech., 18, 149–172CrossRefGoogle Scholar
Sobey, R. J. and Young, I. R., 1986, Hurricane wind waves — a discrete spectral model, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 112, 3, 370–389CrossRefGoogle Scholar
Sommerfeld, , A., 1896, Mathematische Theorie der Diffraktion, Mathematische Annalen, 47, 317–374CrossRefGoogle Scholar
Sorensen, R. M., 1993, Basic Wave Mechanics: For Coastal and Ocean Engineers, New York, John Wiley & Sons, 284 pp.Google Scholar
S⊘rensen, O. R., Kofoed-Hansen, H., Rugbjerg, M. and S⊘rensen, L. S., 2004, A third-generation spectral wave model using an unstructured finite volume technique, Proc. 29thInt. Conf. Coastal Engineering (Lisbon), Singapore, World Scientific, pp. 894–906Google Scholar
Southgate, H. N., 1984, Techniques of ray averaging, Int. J. Num. Meth. Fluids, 4, 725–747CrossRefGoogle Scholar
Southgate, H. N. and Nairn, R. B., 1993, Deterministic profile modelling of nearshore processes, Part 1. Waves and currents, Coastal Engineering, 19, 27–56CrossRefGoogle Scholar
SPM, 1973, 1984, Shore Protection Manual, U.S. Army Coastal Engineering Research Center, I
Srokosz, M. A. and Challenor, P. G., 1987, Joint distributions of wave height and period; a critical comparison, Ocean Engineering, 14, 4, 295–311CrossRefGoogle Scholar
Srokosz, M. A., 1988, A note on the joint distribution of wave height and period during the growth phase of a storm, Ocean Engineering, 15, 4, 379–387CrossRefGoogle Scholar
Srokosz, M. A. 1990, Wave statistics, in Surface Waves and Fluxes, eds. Geernaert, G. L. and Plant, W. J., Dordrecht, Kluwer Academic Publishers, 1, pp. 285–332Google Scholar
Stansell, P., 2005, Distributions of extreme wave, crest and trough heights measured in the North Sea, Ocean Engineering, 32, 8–9, 1015–1036CrossRefGoogle Scholar
Stefanakos, Ch. N., Athanassoulis, G. A., Cavaleri, L., Bertotti, L. and Lefèvre, J. M., 2004a, Wind and wave climatology of the Mediterranean Sea, part 1: wind statistics, Proc. 14thInt. Offshore and Polar Engineering Conf. (Toulon), Cupertino, CA, ISOPE, pp. 177–186Google Scholar
Stefanakos, Ch. N., Athanassoulis, G. A., Cavaleri, L., Bertotti, L. and Lefèvre, J. M., 2004b, Wind and wave climatology of the Mediterranean Sea, part 2: wave statistics, Proc. 14thInt. Offshore and Polar Engineering Conf. (Toulon), Cupertino, CA, ISOPE, pp. 187–196Google Scholar
Stelling, G. S. and Leendertse, J. J., 1992, Approximation of convective processes by cyclic AOI methods, Proc. 2ndInt. Conf. Estuarine and Coastal Modeling (Tampa), New York, ASCE, pp. 771–782Google Scholar
Stelling, G. S. and Zijlema, M., 2003, An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation, Int. J. Num. Meth. Fluids, 43, 1, 1–23CrossRefGoogle Scholar
Stoker, J. J., 1957, Water Waves, The Mathematical Theory with Applications, New York, Interscience Publishers, Inc., 567 pp.Google Scholar
Stokes, G. G., 1847, On the theory of oscillatory waves, Trans. Camb. Phil. Soc., 8, 441–455 (reprinted in Mathematical and Physical Papers, London, 1, pp. 314– 326)Google Scholar
Suh, K. D., Kim, Y. Y. and Lee, D. Y., 1994, Equilibrium range spectrum of waves propagating on currents, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 120, 5, 434–450CrossRefGoogle Scholar
Suzuki, Y., I. Isozaki and T. Tanahashi, 1994, On the development of a global ocean wave model JWA3G, Proc. Int. Conf. on Port and Harbour Construction, Hydro-Port '94, Yokosuka, Port and Harbour Research Institute, pp. 227–237
Svendsen, I. A., 1984, Wave heights and set-up in a surf zone, Coastal Engineering, 8, 303–329CrossRefGoogle Scholar
Svendsen, I. A., 2006, Introduction to nearshore hydrodynamics, Advanced Series on Ocean Engineering, Singapore, World Scientific, 24, 722 p.Google Scholar
Svendsen, I. A., Qin, W. and Ebersole, B. A., 2003, Modelling waves and currents at the LSTF and other laboratory facilities, Coastal Engineering, 50, 19–45CrossRefGoogle Scholar
Sverdrup, H. V. and Munk, W. H., 1946, Empirical and theoretical relations between wind, sea and swell, Trans. Am. Geophys. Union, 27, 823–827CrossRefGoogle Scholar
Sverdrup, H. V. and Munk, W. H. 1947, Wind, Sea and Swell: Theory of Relations for Forecasting, Washington, U.S. Navy Hydrographic Office, Publication. No. 601CrossRefGoogle Scholar
SWAMP (Sea Wave Modelling Project) Group (24 authors), 1985, Ocean Wave Modelling, New York, Plenum Press, 256 pp.
Takayama, T., Hashimoto, N., Nagai, T., Takahashi, T., Sasaki, H. and Ito, Y., 1994, Development of a submerged Doppler-type directional wave meter, Proc. 24thInt. Conf. Coastal Engineering (Kobe), New York, ASCE, pp. 624–634Google Scholar
Tayfun, M. A., 1981, Breaking-limited wave heights, J. Waterway, Port, Coastal and Ocean Div., New York, ASCE, 107, WW2, 59–69Google Scholar
Tayfun, M. A. 1990, Distribution of large wave heights, J. Waterway, Port, Coastal, and Ocean Engineering, New York ASCE, 116, 6, 686–707CrossRefGoogle Scholar
Tayfun, M. A. 2004, Statistics of wave crests in storms, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 130, 4, 155–161CrossRefGoogle Scholar
Taylor, P. A. and Lee, R. J., 1984, Simple guidelines for estimating wind speed variations due to small-scale topographic features, Climatol. Bull, 18, 3–32Google Scholar
Thijsse, J. Th., 1948, Dimensions of wind-generated waves, General Assembly of Association d'Océanographie Physique (IGGU), Oslo, Procès-Verbaux, 4, 80–81Google Scholar
Thijsse, J. Th. and J. B. Schijf, 1949, no title, XVIIthInt. Naval Congress, Lisbon, Section II, Communication 4, pp. 151–171
Thijsse, J. Th., 1952, Growth of wind-generated waves and energy transfer, Proc. NBS Semicentennial Symp. on Gravity Waves, Washington, National Bureau of Standards, Circular 521, pp. 281–287Google Scholar
Thornton, E. B., 1977, Rederivation of the saturation range in the frequency spectrum of wind-generated gravity waves, J. Phys. Oceanogr., 7, 1, 137–1402.0.CO;2>CrossRefGoogle Scholar
Thornton, E. B. and Schaeffer, G., 1978, Probability density functions of breaking waves, Proc. 18thConf. Coastal Engineering (Hamburg), New York, ASCE, pp. 507–519Google Scholar
Thornton, E. B. and Guza, R. T., 1983, Transformation of wave height distribution, J. Geophys. Res., 88, C10, 5925–5938CrossRefGoogle Scholar
Toba, Y., 1972, Local balance in the air-sea boundary processes, I. On the growth process of wind waves, J. Oceanogr. Soc. Japan, 28, 3, 109–120CrossRefGoogle Scholar
Toba, Y. 1973, Local balance in the air-sea boundary processes, III. On the spectrum of wind waves, J. Oceanogr. Soc. Japan, 29, 2, 209–220CrossRefGoogle Scholar
Toba, Y. 1997, The 3/2-power law for ocean wind waves and its applications, in Advances in Coastal and Ocean Engineering, ed: Liu, P. L.-F., Singapore, World Scientific, 3, pp. 31–65Google Scholar
Tolman, H. L., 1990, Wind wave propagation in tidal seas, Ph.D. thesis, published as Communications on Hydraulic and Geotechnical Engineering, Delft University of Technology, Faculty of Civil Engineering, Report. No. 90–1, 180 pp
Tolman, H. L., 1991, A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents, J. Phys. Oceanogr., 21, 6, 782–7972.0.CO;2>CrossRefGoogle Scholar
Tolman, H. L., 1992a, Effects of numerics on the physics in a third-generation wind-wave model, J. Phys. Oceanogr., 22, 10, 1095–11112.0.CO;2>CrossRefGoogle Scholar
Tolman, H. L., 1992b, An evaluation of expressions for the wave energy dissipation due to bottom friction in the presence of currents, Coastal Engineering, 16, 165–179CrossRefGoogle Scholar
Tolman, H. L. 1994, Wind waves and movable-bed bottom friction, J. Phys. Oceanogr., 24, 5, 994–10092.0.CO;2>CrossRefGoogle Scholar
Tolman, H. L. 1995, Subgrid modeling of moveable-bed bottom friction in wind wave models, Coastal Engineering, 26, 57–75CrossRefGoogle Scholar
Tolman, H. J. and Chalikov, D., 1996, Source terms in a third-generation wind wave model, J. Phys. Oceanogr., 26, 11, 2497–25182.0.CO;2>CrossRefGoogle Scholar
Tomiyasu, K., 1978, Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface, Proc. IEEE, 66, 563–583CrossRefGoogle Scholar
Tosi, R., L. Cavaleri, G. Grancini and L. Iovenitti, 1984, Statistica delle onde estreme Mare Tirreno, Padua, Consiglio Nazionale delle Ricerche, 86 pp
Tracy, B. A. and Resio, D. T., 1982, Theory and Calculation of The Nonlinear Energy Transfer between Sea Waves in Deep Water, WES Report 11, Vicksburg, MD,U.S. Army Engineers Waterways Experiment StationGoogle Scholar
Tucker, M. J., 1950, Surf beats: sea waves of 1 to 5 min. period, Proc. Roy. Soc. London, A, 202, 565–573CrossRefGoogle Scholar
Tucker, M. J. 1956, A shipborne wave recorder, Trans. Inst. Naval Architects, 98, 236–250Google Scholar
Tucker, M. J. 1982, The heave response of a spar buoy, Ocean Engineering, 9, 3, 259–270CrossRefGoogle Scholar
Tucker, M. J. 1994, Nearshore wave height during storms, Coastal Engineering, 24, 111–136CrossRefGoogle Scholar
Tucker, M. J. and Pitt, E. G., 2001, Waves in Ocean Engineering, Amsterdam, Elsevier, 521 pp.Google Scholar
Tukey, J. W. and R. W. Hamming, 1948, Measuring Noise Color 1, Murray Hill, NJ, Bell Telephone Lab., Memorandum for File MM-49-110-119, 120 pp
US Navy, 1974 etc., Marine Climatic Atlas of the World, Vol. I: North Atlantic Ocean; Vol. II: North Pacific Ocean; Vol. III: Indian Ocean; Vol. IV: South Atlantic Ocean; Vol. V: South Pacific Ocean; Vol. VII: Arctic, Vol. VIII: The World; Vol. IX: World-wide Means and Standard Deviations, Washington U.S. Government Printing Office
US Navy, 1983, Navy Hindcast Spectral Ocean Wave Model Climatic Atlas: North Atlantic Ocean, Washington, U.S. Government Printing Office, 375 pp.
van der Vlugt, A. J. M., A. J. Kuik and L. H. Holthuijsen, 1981, The WAVEC directional buoy under development, Proc. Directional Wave Spectra Applications '81, (Berkeley), New York, ASCE, pp. 50–60
Vorst, H. A., 1992, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13, 2, 631–644CrossRefGoogle Scholar
Gelder, P. H. A. J. M. and Vrijling, J. K., 1999, On the distribution function of the maximum wave height in front of reflecting structures, Proc. Conf. Coastal Structures, ed. Losada, I. J., 1, pp. 37–46Google Scholar
Vledder, G. Ph., 1992, Statistics of wave group parameters, Proc. 23rdInt. Conf. Coastal Engineering (Venice), New York, ASCE, pp. 946–959Google Scholar
Vledder, G. Ph., Goda, Y., Hawkes, P., Mansard, E., Martin, M. J., Mathiesen, M., Peltier, E. and Thompson, E., 1993, A case study of extreme wave analysis: a comparative analysis, Proc. 2nd Int. Symp. on Ocean Wave Measurement and Analysis WAVES 93 (New Orleans), New York, ASCE, pp. 978–992Google Scholar
Vledder, G. Ph. and Bottema, M., 2002, Improved modelling of nonlinear four-wave interactions in shallow water, Proc. 28thInt. Conf. Coastal Engineering (Cardiff), Singapore, World Scientific, pp. 459–471Google Scholar
Vledder, G. Ph., 2006, The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models, Coastal Engineering, 53, 2–3, 223–242Google Scholar
Verhagen, L. A., Holthuijsen, L. H. and Won, Y. S., 1992, Modelling ocean waves in the Columbia River entrance, Proc. 23rdInt. Conf. Coastal Engineering (Venice), New York, ASCE, pp. 2893–2901Google Scholar
Vincent, C. L., 1985, Depth-controlled wave height, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 111, 459–475CrossRefGoogle Scholar
Vincent, C. L. and Hughes, S. A., 1985, Wind wave growth in shallow water, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 111, 1, 765–770CrossRefGoogle Scholar
Vincent, C. L. and Briggs, M. J., 1989, Refraction-diffraction of irregular waves over a mound, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 115, 2, 269–284Google Scholar
Vincent, C. L., J. M. Smith and J. Davis, 1994, Parameterization of wave breaking in models, Proc. Int. Symp.: Waves — Physical and Numerical Modelling, University of British Columbia, Vancouver, Canada, eds. M. Isaacson and M. Quick, II, pp. 753–762
von Gerstner, F. J., 1802, Theorie der Wellen, Abhandlungen der königlichen böhmischen Gesellschaft der Wissenschaften, now listed under Česka spolecnost nauk (Prague) and reprinted in Annalen der Physik 1809, 32, 412–440
Voorrips, A. C., Makin, V. K. and Komen, G. J., 1994, The influence of atmospheric stratification on the growth of water waves, Boundary-Layer Meteorol., 72, 287–303CrossRefGoogle Scholar
Vuik, C., 1993, Solution of the discretized incompressible Navier-Stokes equations with the GMRES method, Int. J. Num. Meth. Fluids, 16, 507–523CrossRefGoogle Scholar
Walsh, E. J., Hancock, D. W., Hines, D. E., Swift, R. N. and Scott, J. F., 1985, Directional wave spectra measured with the surface contour radar, J. Phys. Oceanogr., 15, 5, 566–5922.0.CO;2>CrossRefGoogle Scholar
Walsh, E. J., Hancock, D. W., Hines, D. E., Swift, R. N. and Scott, J. F. 1989, An observation of the directional wave spectrum evolution from shoreline to fully developed, J. Phys. Oceanogr., 19, 5,670–6902.0.CO;2>CrossRefGoogle Scholar
WAMDI group (13 authors), 1988, The WAM model — a third generation ocean wave prediction model, J. Phys. Oceanogr., 18, 12, 1775–18102.0.CO;2>CrossRef
Wang, D. W. and Hwang, P. A., 2001a, Evolution of the bimodal directional distribution of ocean waves, J. Phys. Oceanogr, 31, 5, 1200–12212.0.CO;2>CrossRefGoogle Scholar
Wang, D. W. and Hwang, P. A. 2001b, A bimodal directional distribution model for directional buoy measurements, Proc. 4th Int. Symp. Ocean Wave Measurement and Analysis WAVES 2001 (San Francisco), Reston, VA, ASCE, pp. 163–172Google Scholar
Webb, D., 1978, Nonlinear transfers between sea waves, Deep-Sea Res., 25, 3, 279–298CrossRefGoogle Scholar
Weber, N., 1991a, Bottom friction for wind sea and swell in extreme depth-limited situations, J. Phys. Oceanogr., 21, 1, 149–1722.0.CO;2>CrossRefGoogle Scholar
Weber, S. L., 1989, Surface gravity waves and turbulent bottom friction, Unpublished Ph.D. thesis, University of Utrecht, 128 pp
Weber, S. L., 1991b, Eddy-viscosity and drag-law models for random ocean wave dissipation, J. Fluid Mech., 232, 73–98CrossRefGoogle Scholar
Webster, A. G., 1955, Partial Differential Equations of Mathematical Physics, New York, Dover Publications Inc., 440 pp.Google Scholar
Weggel, J. R., 1972, Maximum breaker height, J. Waterways, Harbors, and Coastal Engineering Div., New York, ASCE, 98, WW4, 529–548Google Scholar
Wei, G., Kirby, J. T., Grilli, S. T. and Subramanya, R., 1995, A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves, J. Fluid Mech., 294, 71–92CrossRefGoogle Scholar
Whitham, G. B., 1974, Linear and Nonlinear Waves, New York, John Wiley and Sons, 636 pp.Google Scholar
Wiegel, R. L., 1960, A presentation of cnoidal wave theory for practical application, J. Fluid Mech., 7, 2, 273–286CrossRefGoogle Scholar
Wiegel, R. L. 1964, Oceanographical Engineering, Englewood Cliffs, NJ, Prentice Hall Inc., 532 pp.Google Scholar
Willmarth, W. W. and Wooldridge, C. E., 1962, Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer, J. Fluid Mech., 14, 187–210CrossRefGoogle Scholar
Wilson, B. W., 1965, Numerical prediction of ocean waves in the North Atlantic for December 1959, Deutsch. Hydrogr. Z., 18, 3, 114–130CrossRefGoogle Scholar
WMO (World Meteorological Organization), 1998, Guide to Wave Analysis and Forecasting, ed. A. K. Laing, Geneva, WMO, 159 pp
Woolf, D. K. and Thorpe, S. A., 1991, Bubbles and the air-sea exchange of gases in near-saturation conditions, J. Mar. Res., 49, 3, 435–466CrossRefGoogle Scholar
Wu, H.-Y., E.-Y. Hsu and R. L. Street, 1977, The energy transfer due to air-input, nonlinear wave-wave interaction and white cap dissipation associated with wind-generated waves, Technical Report 207, Stanford, CA, Stanford University, 158 pp
Wu, H.-Y., Hsu, E.-Y. and Street, R. L., 1979, Experimental study of nonlinear wave-wave interaction and white-cap dissipation of wind-generated waves, Dynamics Atmos. Oceans, 3, 55–78CrossRefGoogle Scholar
Wu, J., 1982, Wind-stress coefficients over sea surface from breeze to hurricane, J. Geophys. Res., 87, C12, 9704–9706CrossRefGoogle Scholar
Wyatt, L. R., 1995, The effect of fetch on the directional spectrum of Celtic Sea storm waves, J. Phys. Oceanogr., 25, 6, 1550–15592.0.CO;2>CrossRefGoogle Scholar
Wyatt, L. R. and Ledgard, L. J., 1996, OSCR wave measurement — some preliminary results, IEEEJ. Oceanic Engineering, 21, 1, 64–76CrossRefGoogle Scholar
Wyatt, L. R., 1997, The ocean wave directional spectrum, Oceanography, Special issue on high frequency radars for coastal oceanography, 10, 2, 85–89CrossRefGoogle Scholar
Wyatt, L. R., Thompson, S. P. and Burton, R. R., 1999, Evaluation of high frequency radar wave measurement, Coastal Engineering, 37, 259–282CrossRefGoogle Scholar
Wyatt, L. R. and Prandle, D. (eds.), 1999, Monitoring current and wave variability in coastal seas, Coastal Engineering, Special Issue, 37, 3 + 4, 193–546Google Scholar
Wyatt, L. R., 2000, Limits to the inversion of HF radar backscatter for ocean wave measurement. J. Atmos. Ocean Technol., 17, 12, 1651–16662.0.CO;2>CrossRefGoogle Scholar
Yamaguchi, M. 1984, Approximate expressions for integral properties of the JONSWAP spectrum, Proc. Japanese Society of Civil Engineers, 345/II-1, 149–152 [in Japanese]Google Scholar
Yamaguchi, M. 1986, A numerical model of nearshore currents based on a finite amplitude wave theory, Proc. 20thInt. Conf. Coastal Engineering (Taipei), New York, ASCE, pp. 849–863Google Scholar
Yamaguchi, M. 1988, A numerical model of nearshore currents due to irregular waves, Proc. 21stInt. Conf. Coastal Engineering (Malaga), New York, ASCE, pp. 1113–1126Google Scholar
Yamaguchi, M., Holthuijsen, L. H., Hatada, Y. and Hino, M., 1988, A new hybrid parametrical wave prediction model taking the wave directionality into account, Proc. Japanese Society of Civil Engineers, 399/II-10, 193–202 [in Japanese]Google Scholar
Yamaguchi, M. and Y. Hatada, 1990, A numerical model for refraction computation of irregular waves due to time-varying currents and water depth, Proc. 22ndInt. Conf. Coastal Engineering (Delft), New York, ASCE, pp. 205–217
Yamaguchi, M., 1992, Interrelation of cnoidal wave theories, Proc. 23rdInt. Conf. Coastal Engineering (Venice), New York, ASCE, pp. 737–750Google Scholar
Yan, L., 1987, An Improved Wind Input Source Term for Third Generation Ocean Wave Modelling, Scientific report WR-No 87–8, De Bilt, Royal Netherlands Meteorological Institute (KNMI)Google Scholar
Young, I. R. and Sobey, R. J., 1985, Measurements of the wind-wave energy flux in an opposing wind, J. Fluid Mech., 151, 427–442CrossRefGoogle Scholar
Young, I. R., Rosenthal, W. and Ziemer, F., 1985, A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents, J. Geophys. Res., 90, C1, 1049–1059CrossRefGoogle Scholar
Young, I. R., 1988a, Parametric hurricane wave prediction model, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 114, 5, 637–652CrossRefGoogle Scholar
Young, I. R. 1988b, A shallow water spectral wave model, J. Geophys. Res., 93, C5, 5113–5129CrossRefGoogle Scholar
Young, I. R. and Sobey, R. J., 1988, Deep water swell and spectral wave decay in opposing winds, J. Waterway, Port, Coastal, and Ocean Engineering, New York, ASCE, 114, 6, 732–744CrossRefGoogle Scholar
Young, I. R. and Banner, M. L., 1992, Numerical experiments on the evolution of fetch limited waves, in Breaking Waves, IUTAM Symposium, Sydney, Australia, eds. Banner, M. L. and Grimshaw, R. H. J., Berlin, Springer-Verlag, pp. 267–275Google Scholar
Young, I. R. and Vledder, G. Ph., 1993, A review of the central role of nonlinear interactions in wind-wave evolution, Phil. Trans. Roy. Soc. London, A, 342, 505– 524CrossRefGoogle Scholar
Young, I. R., 1994, On the measurement of directional wave spectra, Appl. Ocean Res., 16, 283–294CrossRefGoogle Scholar
Young, I. R., Verhagen, L. A. and Banner, M. L., 1995, A note on the bimodal directional spreading of fetch-limited wind waves, J. Geophys. Res., 100, C1, 773–778CrossRefGoogle Scholar
Young, I. R. and Verhagen, L. A., 1996a, The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency, Coastal Engineering, 29, 47–78CrossRefGoogle Scholar
Young, I. R. and Verhagen, L. A. 1996b, The growth of fetch limited waves in water of finite depth. Part 2. Spectral evolution, Coastal Engineering, 29, 79–99CrossRefGoogle Scholar
Young, I. R., Verhagen, L. A. and Shatri, S. K., 1996, The growth of fetch limited waves in water of finite depth. Part 3. Directional spectra, Coastal Engineering, 29, 101–122CrossRefGoogle Scholar
Young, I. R. and Holland, G. J., 1996, Atlas of the Oceans: Wind and Wave Climate, Oxford, Pergamon Press, Elsevier Science Inc., 241 pp.Google Scholar
Young, I. R., 1997, Observations of the spectra of hurricane wind generated waves, Ocean Engineering, 25, 4–5, 261–276Google Scholar
Young, I. R. 1998, An experimental investigation of the role of atmospheric stability in wind wave growth, Coastal Engineering, 34, 23–33CrossRefGoogle Scholar
Young., I. R. and Eldeberky, Y., 1998, Observations of triad coupling of finite depth wind waves, Coastal Engineering, 33, 137–154CrossRefGoogle Scholar
Young, I. R. and Holland, G. J., 1998, Atlas of The Oceans: Wind and Wave Climate, Version 1.0, CD-ROM, Oxford, Pergamon Press, Elsevier Science Inc.Google Scholar
Young, I. R., 1999, Wind Generated Ocean Waves, Amsterdam, Elsevier, 2, 288 pp.Google Scholar
Young, I. R. and Babanin, A. V., 2006, The form of the asymptotic depth-limited wind-wave frequency spectrum, J. Geophys. Res., 111, C6, C06031CrossRefGoogle Scholar
Yu, Y.-X., Li, S.-X., Onyx, Y. S. and Wai, W. H., 2000, Refraction and diffraction of random waves through breakwater, Ocean Engineering, 27, 5, 489–509CrossRefGoogle Scholar
Zakharov, V. E. and Pushkarev, A. N., 1999, Diffusion model of interacting gravity waves on the surface of deep fluid, Nonlinear Processes Geophys., European Geophysical Society, 6, 1–10CrossRefGoogle Scholar
Zakharov, V. E., 1999, Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid, Eur. J. Mech. B/Fluids, 18, 327–344CrossRefGoogle Scholar
Zijlema, M. and Stelling, G. S., 2005, Further experiences with computing non-hydrostatic free-surface flows involving water waves, Int. J. Num. Meth. Fluids, 48, 169–197CrossRefGoogle Scholar
Zijlema, M. and Westhuysen, A. J., 2005, On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra, Coastal Engineering, 52, 237–256CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Leo H. Holthuijsen
  • Book: Waves in Oceanic and Coastal Waters
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618536.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Leo H. Holthuijsen
  • Book: Waves in Oceanic and Coastal Waters
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618536.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Leo H. Holthuijsen
  • Book: Waves in Oceanic and Coastal Waters
  • Online publication: 03 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618536.016
Available formats
×