Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:12:00.856Z Has data issue: false hasContentIssue false

7 - Viscoelastic Properties of Materials

Published online by Cambridge University Press:  21 January 2010

Roderic Lakes
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Introduction

Rationale

The purpose of Chapter 7 is to present the viscoelastic behavior of representative real materials so that the reader can gain a sense of orders of magnitude of the effects. Engineers and scientists who deal with elastic behavior of materials are aware of the moduli of various common materials. Similarly, knowledge of the viscoelastic properties of particular materials is essential to rationally apply them. Further examples, with analysis of the physical causes of the viscoelasticity, are provided in Chapter 8. Materials presented here are classified as polymers, metals, ceramics, biological composites and synthetic composites (Chapter 9). In a survey, damping properties of metals, ceramics, and metal matrix composites are compared [1]. Structural metals tend to be low damping, with tan? on the order of 10−3 or less. Experimental results for the same material can differ substantially depending on purity and permanent deformation. Most ceramics also exhibit low damping at ambient temperature, but some exhibit modest damping at elevated temperature.

Overview: Some Common Materials

An overview of modulus and damping of selected classes of materials at small strain is shown in Figure 7.1. At high strain amplitude, some metals exhibit higher damping [2] in such maps.

The loss tangents of some well-known materials at various temperatures and frequencies are presented in Table 7.1. Most of the data are at room temperature, denoted rt in Table 7.1 except as noted, and at audio or subaudio frequencies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×