Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T05:35:56.686Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Don Bradshaw
Affiliation:
University of Western Australia, Perth
Get access
Type
Chapter
Information
Vertebrate Ecophysiology
An Introduction to its Principles and Applications
, pp. 231 - 274
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acher, R. and Chauvet, J. (1997) Principles in protein evolution: composite domain evolution of neurohyphopysial prehormones. In Advances in Comparative Endocrinology (ed. S. Kawashima and S. Kikuyama), pp. 1191–9. Monduzzi Editore, Bologna, Italy
Adams, N. J., Brown, C. R. and Nagy, K. A. (1986) Energy expenditure of free-ranging Wandering albatrosses, Diomedea exulans. Physiol. Zool., 56: 583–91CrossRefGoogle Scholar
Adams, S. and Costa, D. P. (1993) Water conservation and protein metabolism in Northern elephant seal pups during the postweaning fast. J. Comp. Physiol. B, 163: 367–73CrossRefGoogle ScholarPubMed
Algar, D. (1986) An ecological study of macropod marsupial species on a reserve. PhD thesis, The University of Western Australia, Perth
Alkon, P. U., Pinshow, B. and Degen, A. A. (1984) Seasonal water turnover rates and body water volumes in desert chukars. Condor, 84: 332–7CrossRefGoogle Scholar
Ambrose, S. J. and Bradshaw, S. D. (1988a) The water and electrolyte metabolism of free-ranging and captive White-Browed scrubwrens, Sericornis frontalis (Acanthizidae) from arid, semi-arid and mesic environments. Aust. J. Zool., 36: 29–51CrossRefGoogle Scholar
Ambrose, S. J. and Bradshaw, S. D. (1988b) Seasonal changes in standard metabolic rates in the White-Browed scrubwren, Sericornis frontalis (Aves: Acanthizidae) in arid, semi-arid and mesic environments. Comp. Biochem. Physiol., 89A: 79–83CrossRefGoogle Scholar
Ambrose, S. J., Bradshaw, S. D., Withers, P. C. and Murphy, D. P. (1996) Water and energy balance of captive and free-ranging Spinifexbirds (Eremiornis carteri) North (Aves: Sylviidae) on Barrow Island, Western Australia. Aust. J. Zool., 44: 107–17CrossRefGoogle Scholar
Amos, W., Worthington, Wilmer J., Fullard, K., Burg, T. M., Croxall, J. P., Bloch, D. and Coulson, T. (2001) The influence of parental relatedness on reproductive success. Proc. R. Soc. Lond. B, 268: 2021–7CrossRefGoogle ScholarPubMed
Ancel, A., Kooyman, G. L., Ponganis, E. P., Gendner, J.-P., Lignon, J., Mestre, X., Huin, N., Thorson, P. H., Robisson, P. and Maho, Y. (1992) Foraging behaviour of Emperor penguins as a resource detector in winter and summer. Nature (Lond.), 360: 336–8CrossRefGoogle Scholar
Ancel, A., Visser, H., Handrich, Y., Masman, D. and Maho, Y. (1997) Energy saving in huddling penguins. Nature (Lond.), 385: 304–5CrossRefGoogle Scholar
Andrewartha, H. G. and Birch, L. C. (1954) The Distribution and Abundance of Animals. University of Chicago Press, Chicago. 506pp.
Anstee, S. D. and Needham, D. J. (1998) The use of a new field anaesthesia technique to allow the correct fitting of radio collars on the Western Pebble Mound mouse, Pseudomys chapmani. Aust. Mammal., 20: 99–101Google Scholar
Arena, P. C., Richardson, K. C. and Cullen, L. K. (1988) Anaesthesia in two species of large Australian skinks. Vet. Rec., 123: 155–8CrossRefGoogle Scholar
Arnould, J. P. Y., Briggs, D. R., Croxall, J. P., Prince, P. A. and Wood, A. G. (1996) The foraging behaviour and energetics of Wandering albatrosses, brooding chicks. Antarctic Sci., 8: 229–36CrossRefGoogle Scholar
Aschoff, J. and Pohl, H. (1970) Rhythmic variations in energy metabolism. Fed. Proc., 29: 1541–52Google ScholarPubMed
Astheimer, L. B., Buttemer, W. A. and Wingfield, J. (1992) Interactions of corticosterone with feeding, activity and metabolism in passerine birds. Ornis Scand., 23: 355–65CrossRefGoogle Scholar
Astheimer, L. B., Buttemer, W. A. and Wingfield, J. C. (1994) Gender differences in the adrenocortical response to ACTH challenge in an arctic passerine, Zonotrichia leucophrys gambelii. Gen. Comp. Endocrinol., 94: 33–43Google Scholar
Astheimer, L. B., Buttemer, W. A. and Wingfield, J. C. (1995) Seasonal and acute changes in adrenocortical responsiveness in an Arctic-breeding bird. Horm. Behav., 29: 442–57CrossRefGoogle Scholar
Atchley, W. R. and Anderson, D. (1978) Ratios and the statistical analysis of biological data. Syst. Zool., 27: 71–8CrossRefGoogle Scholar
Augee, M. L. and Gooden, B. A. (1992) Monotreme hibernation – some afterthoughts. In Platypus and Echidnas (ed. M. L. Augee), pp. 174–6. The Royal Zoological Society of New South Wales, Mosman, New South Wales
Avery, R. A. (1982) Field studies of body temperature temperatures and thermoregulation. In Biology of the Reptilia (ed. C. Gans and F. H. Pough), pp. 93–166. Academic Press, New York
Baddouri, K., Butlen, D., Imbert-Teboul, M., Bouffant, F., Marchetti, J., Chabardes, D. and Morel, F. (1984) Plasma antidiuretic hormone levels and kidney responsiveness to vasopressin in the jerboa Jaculus orientalis. Gen. Comp. Endocrinol., 54: 203–15CrossRefGoogle ScholarPubMed
Baddouri, K., El Hilali, M., Marchetti, J. and Menard, J. (1987) Renal excretion capacity in hydrated desert rodents (Jaculus orientalis and Jaculus deserti). J. Comp. Physiol. B, 157: 237–40CrossRefGoogle Scholar
Baddouri, K., Marchetti, J., Hilali, M. and Menard, J. (1981) Mesure de l'hormone antidiurétique et de l'activité rénine plasmatique chez les Rongeurs désertiques (Jaculus orientalis et Jaculus deserti). C.R. Acad. Sci. (Paris), 292: 1143–6Google Scholar
Bailey, N. J. (1952) Improvements in the interpretation of recapture data. J. Anim. Ecol., 21: 120–7CrossRefGoogle Scholar
Baker, J. R., Anderson, S. S. and Fedak, M. A. (1988) The use of a ketamine–diazepam mixture to immobilise wild grey seals (Halichoerus grypus) and southern elephant seals (Mirounga leonina). Vet. Rec., 123: 287–9CrossRefGoogle Scholar
Baker, J. R., Fedak, M. A., Anderson, S. S., Arnbom, T. and Baker, R. (1990) Use of a tiletamine–zolazepam mixture to immobilise wild grey seals and southern elephant seals. Vet. Rec., 126: 75–7Google ScholarPubMed
Bakker, H. R. and Bradshaw, S. D. (1977) The effect of hypothalamic lesions on water metabolism of the toad Bufo marinus. J. Endocrinol., 75: 161–72CrossRefGoogle ScholarPubMed
Bakker, H. R. and Bradshaw, S. D. (1983) Renal function in the spectacled Hare Wallaby (Lagorchestes conspicillatus): Effects of dehydration and protein deficiency. Aust. J. Zool., 31: 101–8CrossRefGoogle Scholar
Bakker, H. R. and Bradshaw, S. D. (1989) Water turnover and electrolyte balance of the Spectacled Hare Wallaby (Lagorchestes conspicillatus) on Barrow Island. Comp. Biochem. Physiol., 92A: 521–9CrossRefGoogle Scholar
Bakker, H. R. and Main, A. R. (1980) Condition, body composition and total body water estimation in the quokka, Setonix brachyurus (Macropodidae). Aust. J. Zool., 28: 395–406CrossRefGoogle Scholar
Bankir, L. and Rouffignac, C. (1985) Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol., 249: R643–66Google ScholarPubMed
Banta, M. R. and Holcombe, D. W. (2002) The effects of thyroxine on metabolism and water balance in a desert-dwelling rodent, Merriam's kangaroo rat (Dipodomys merriami). J. Comp. Physiol. B, 172: 17–25CrossRefGoogle Scholar
Barbraud, C. and Weimerskirch, H. (2001) Emperor penguins and climate change. Nature (Lond.), 411: 183–6CrossRefGoogle ScholarPubMed
Barker-Jorgensen, C. (1997) Urea and amphibian water economy. Comp. Biochem. Physiol., 117A: 161–70CrossRefGoogle Scholar
Barnett, J. L. (1973) A stress response in Antechinus stuartii (Macleay). Aust. J. Zool., 21: 501–13CrossRefGoogle Scholar
Bartholomew, G. A. (1972) The water economy of seed-eating birds that survive without drinking. Proc. 15th Int. Ornithol. Congr., pp. 237–54. W. Junk, The Hague
Bartholomew, G. A. (1982) The diversity of temporal heterothermy. In Living in the Cold: Physiological and Biochemical Adaptations (ed. H. C. Heller, X. J. Musacchia and L. C. H. Wang), pp. 1–12. Elsevier, New York
Baudin, F. (1802/2001) Mon Voyage aux Terres Australes (ed. J. Bonnemains, J.-M. Argentin and M. Marin). Museum d'Histoire Naturelle, Le Havre, Le Havre. 467pp.
Baudinette, R. and Schmidt-Nielsen, K. (1974) Energy cost of gliding flight in Herring gulls. Nature (Lond.), 248: 83–4CrossRefGoogle Scholar
Bayomy, M. F., Shalan, A. G., Bradshaw, S. D., Withers, P. C., Stewart, T. and Thompson, G. (2002) Water content, body weight and acid mucopolysaccharides, hyaluronidase and beta-glucuronidase in response to aestivation in Australian desert frogs. Comp. Biochem. Physiol. (A), 131: 881–92CrossRefGoogle ScholarPubMed
Bell, D. T., Moredount, J. C. and Loneragan, W. A. (1987) Grazing pressure by the Tammar (Macropus eugenii) on the vegetation of Garden Island, Western Australia, and the potential impact on food reserves of a controlled burning regime. J. Roy. Soc. W.A., 69: 89–94Google Scholar
Ben Chaouacha-Chekir, R., Lachiver, F. and Cheniti, T. (1983) Données préliminaires sur le taux de renouvellement d'eau chez un Gerbillidé désertique, Psammomys obesus, étudié dans son environnement naturel en Tunisie. Mammalia, 47: 543–7CrossRefGoogle Scholar
Bennett, A. F. (1982) The energetics of reptilian activity. In Biology of the Reptilia (ed. C. Gans and F. H. Pough), pp. 155–99. Academic Press, New York
Bennett, A. F. (1987) Interindividual variability: an underutilized resource. In New Directions in Ecological Physiology (ed. M. E. Feder, A. F. Bennett, W. W. Burggren and R. B. Huey), pp. 147–69. Cambridge University Press, Cambridge
Bennett, A. F. and Dawson, W. R. (1976) Metabolism. In Biology of the Reptilia (ed. C. Gans and W. R. Dawson), pp. 127–223. Academic Press, New York
Bennett, A. F. and Licht, P. (1972) Anaerobic metabolism during activity in lizards. J. Comp. Physiol. B, 81: 277–88CrossRefGoogle Scholar
Bennett, K. A., McConnell, B. J. and Fedak, M. A. (2001) Diurnal and seasonal variations in the duration and depth of the longest dives in southern elephant seals (Mirounga leonina): possible physiological and behavioural constraints. J. Exp. Biol., 204: 649–62Google ScholarPubMed
Bennett, P. M. and Harvey, P. H. (1987) Active and resting metabolism in birds: allometry, phylogeny and ecology. J. Zool., Lond., 213: 327–63CrossRefGoogle Scholar
Bentley, P. J. (1971) Endocrines and Osmoregulation. Springer-Verlag, Berlin. 300pp.
Berk, M. L. and Heath, J. E. (1975) An analysis of behavioural thermoregulation in the lizard Dipsosaurus dorsalis. J. Thermal Biol., 1: 15–22CrossRefGoogle Scholar
Bernard, C. (1878) Leçons sur les Phénomènes de la Vie communs aux Animaux et aux Végétaux. J.-B. Baillière et Fils, Paris
Berry, K. H. (1984) The status of the desert tortoise (Gopherus agassizii) in the United States. Report of Desert Tortoise Council, U.S. Fish & Wildlife Service, Sacramento, California
Bertolino, S., Viano, C. and Currado, I. (2001) Population dynamics, breeding patterns and spatial use of the garden dormouse (Eliomys quercinus) in an Alpine habitat. J. Zool., Lond., 253: 513–21CrossRefGoogle Scholar
Beuchat, C. A. (1990) Body size, medullary thickness, and urine concentrating ability in mammals. Am. J. Physiol., 258: R298–308Google ScholarPubMed
Bevan, R., Boyd, I. I., Butler, P., Reid, K., Woakes, A. and Croxall, J. (1997) Heart rates and abdominal temperatures of free-ranging South Georgian shags, Phalacrocorax georgianus. J. Exp. Biol., 200: 661–75Google ScholarPubMed
Bevan, R. M., Butler, P. J., Woakes, A. J. and Prince, P. A. (1995) The energy expenditure of free-ranging Black-browed albatrosses. Phil. Trans. R. Soc. Lond. B, 350: 119–31CrossRefGoogle Scholar
Billiards, S. S., King, J. M. and Agar, N. S. (1999) Comparative erythrocyte metabolism in three species of marsupials from Western Australia. Comp. Haem. Int., 9: 86–91CrossRefGoogle Scholar
Bishop, C. M. and Hall, M. R. (1991) Non-invasive monitoring of avian reproduction by simplified faecal steroid analysis. J. Zool., Lond., 224: 649–68CrossRefGoogle Scholar
Block, W. and Vannier, G. (1994) What is ecophysiology? Two perspectives. Acta Oecol. (Berl.), 15: 5–12Google Scholar
Bonnet, X., Bradshaw, S. D., Shine, R. and Pearson, D. (1999) Why do snakes have eyes? The (non-)effect of blindness in island tiger snakes (Notechis scutatus). Behav. Ecol. Sociobiol., 46: 267–72CrossRefGoogle Scholar
Bonnet, X., Lagarde, F., Henen, B. T., Corbin, J., Nagy, K. A., Naulleau, G., Balhoul, K., Chastel, O. and Legrand, A. (2001) Sexual dimorphism in steppe tortoises (Testudo horsfieldii); influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc., 72: 357–72CrossRefGoogle Scholar
Bonnet, X. and Naulleau, G. (1994) Utilisation d'un indice de condition corporelle (BCI) pour l'étude de la reproduction chez les serpents. C.R. Acad. Sci. (Paris), 317: 34–41Google Scholar
Borut, A., Horowitz, M. and Castel, A. (1972) Blood volume regulation in the spiny mouse: capillary changes due to dehydration. Symp. Zool. Soc. Lond., 31: 175–89Google Scholar
Bost, C. A. (1994) Maximum diving depth and diving patterns of the Gentoo penguin, Pygoscelis papua at the Crozet Islands. Mar. Ornithol., 22: 237–44Google Scholar
Bradley, A. J. (1987) Stress and mortality in the Red-Tailed Phascogale, Phascogale calura (Marsupialia: Dasyuridae). Gen. Comp. Endocrinol., 67: 85–100CrossRefGoogle Scholar
Bradley, A. J. (1997) Reproduction and life history in the red-tailed phascogale, Phascogale calura (Marsupialia: Dasyuridae): the adaptive-stress senescence hypothesis. J. Zool., Lond., 241: 739–55CrossRefGoogle Scholar
Bradley, A. J., McDonald, I. R. and Lee, A. K. (1980) Stress and mortality in a small marsupial (Antechinus stuartii Macleay). Gen. Comp. Endocrinol., 40: 188–200CrossRefGoogle Scholar
Bradley, S. E., Mudge, G. H. and Blake, W. D. (1954) The renal excretion of sodium, potassium and water by the Harbour seal (Phoca vitulina L.): effect of apnea, sodium, potassium, and water loading; pitressin; and mercurial diuresis. J. Cell. Comp. Physiol., 43: 1–22CrossRefGoogle ScholarPubMed
Bradshaw, F. J. and Bradshaw, S. D. (2001) Maintenance nitrogen requirement of an obligate nectarivore, the Honey possum, Tarsipes rostratus. J. Comp. Physiol. B, 171: 59–67CrossRefGoogle ScholarPubMed
Bradshaw, S. D. (1970) Seasonal changes in the water and electrolyte metabolism of Amphibolurus lizards in the field. Comp. Biochem. Physiol., 36: 689–718CrossRefGoogle Scholar
Bradshaw, S. D. (1978a) Aspects of hormonal control of osmoregulation in desert reptiles. In Comparative Endocrinology (ed. P. J. Gaillard and H. H. Boer), pp. 213–16. Elsevier North-Holland Biomedical Press, Amsterdam
Bradshaw, S. D. (1978b) Volume regulation in desert reptiles and its control by pituitary and adrenal hormones. In Osmotic and Volume Regulation (ed. C. B. Jorgensen and E. Skadhauge), pp. 38–59. Munksgaard, Cφpenhagen
Bradshaw, S. D. (1981) Ecophysiology of Australian desert lizards: studies on the genus Amphibolurus. In Biogeography and Ecology in Australia (ed. A. Keast), pp. 1395–434. Junk, The Hague
Bradshaw, S. D. (1983) Recent endocrinological research on the Rottnest Island quokka (Setonix brachyurus). J.R. Soc. W. A., 66: 55–61Google Scholar
Bradshaw, S. D. (1986) Ecophysiology of Desert Reptiles. Academic Press, Sydney. 324pp.
Bradshaw, S. D. (1988) Desert reptiles: a case of adaptation or pre-adaptation?J. Arid Envts, 14: 155–74Google Scholar
Bradshaw, S. D. (1990) Aspects of hormonal control of osmoregulation in desert marsupials. In Progress in Comparative Endocrinology (ed. A. Epple, C. G. Scanes and M. H. Stetson), pp. 516–21. Wiley-Liss, New York
Bradshaw, S. D. (1992a) Le problψme du stress dans les études écophysio-logiques: Stratégies de mesure et de contrôle. Bull. Soc. Ecophysiol. (Paris), 17: 69–76Google Scholar
Bradshaw, S. D. (1992b) L'Ecophysiologie d'une île désertique en Australie: études de bilans énergétiques et homéostasie de vertébrés terrestres dans un milieu aride. Bull. Soc. Ecophysiol. (Paris), 17: 83–92Google Scholar
Bradshaw, S. D. (1996) Hormones, stress and their relevance to problems of conservation. In Environmental and Conservation Endocrinology, 3rd Congress of the Asia & Oceania Society for Comparative Endocrinology (ed. J. Joss), pp. 1–4. Macquarie University, Sydney, Sydney
Bradshaw, S. D. (1997a) Homeostasis of Desert Reptiles. Springer-Verlag, Heidelberg. 213pp.
Bradshaw, S. D. (1997b) Water metabolism of endangered Marsupial species. In Advances in Comparative Endocrinology (ed. S. Kawashima and S. Kikuyama), pp. 1701–5. Monduzzi Editore, Bologna, Italy
Bradshaw, S. D. (1999) Ecophysiological studies on desert mammals: insights from stress physiology. Aust. Mammal., 21: 55–65Google Scholar
Bradshaw, S. D. (2000) Field studies of the nutrition of Australian native animals. Proc. Nutr. Soc. Aust., 24: 155–84Google Scholar
Bradshaw, S. D. and Bradshaw, F. J. (1999) Field energetics and the estimation of pollen and nectar intake in the marsupial honey possum, Tarsipes rostratus, in heathland habitats of south-western Australia. J. Comp. Physiol. B, 169: 569-80CrossRefGoogle ScholarPubMed
Bradshaw, S. D. and Bradshaw, F. J. (2002) Short-term movements and habitat utilisation of the marsupial Honey possum, Tarsipes rostratus. J. Zool., Lond., 258: 343–8CrossRefGoogle Scholar
Bradshaw, S. D., Cheniti, T. and Lachiver, F. (1976) Echanges hydriques chez deux rongeurs désertiques, Meriones shawii et Meriones libycus étudiés dans leur environnement naturel en Tunisie. Bull. Soc. Ecophysiol. (Paris), 1: 30–1Google Scholar
Bradshaw, S. D., Cohen, D., Katsaros, A., Tom, J. and Owen, F. J. (1987a) Determination of 18O by prompt nuclear reaction analysis: application for measurement of microsamples. J. Appl. Physiol., 63: 1296–302CrossRefGoogle Scholar
Bradshaw, S. D. and De'ath, G. (1991) Variation in condition indices due to climatic and seasonal factors in an Australian desert lizard, Amphibolurus nuchalis. Aust. J. Zool., 39: 373–85CrossRefGoogle Scholar
Bradshaw, S. D. and Main, A. R. (1968) Behavioural attitudes and regulation of temperature in Amphibolurus lizards. J. Zool., Lond., 154: 193–221CrossRefGoogle Scholar
Bradshaw, S. D., Morris, K. D. and Bradshaw, F. J. (2001) Water and electrolyte homeostasis and kidney function of desert-dwelling marsupial wallabies in Western Australia. J. Comp. Physiol. B, 171: 23–32CrossRefGoogle ScholarPubMed
Bradshaw, S. D., Morris, K. D., Dickman, C. R., Withers, P. C. and Murphy, D. (1994) Field metabolism and turnover in the Golden Bandicoot (Isoodon auratus) and other small mammals from Barrow Island, Western Australia. Aust. J. Zool., 42: 29–41CrossRefGoogle Scholar
Bradshaw, S. D., Saint, Girons H. and Bradshaw, F. J. (1991) Patterns of breeding in two species of agamid lizards in the arid sub-tropical Pilbara region of Western Australia. Gen. Comp. Endocrinol., 82: 407–24CrossRefGoogle Scholar
Bradshaw, S. D., Saint, Girons H., Naulleau, G. and Nagy, K. A. (1987b) Material and energy balance of some captive and free-ranging reptiles in western France. Amphib. Rept., 8: 129–42CrossRefGoogle Scholar
Bradshaw, S. D. and Shoemaker, V. H. (1967) Aspects of water and electrolyte changes in a field population of Amphibolurus lizards. Comp. Biochem. Physiol., 20: 855–65CrossRefGoogle Scholar
Braithwaite, R. W. and Lee, A. K. (1979) A mammalian example of semelparity. Am. Nat., 113: 151–5CrossRefGoogle Scholar
Brand, M. D., Couture, P., Else, P. L., Withers, K. W. and Hulbert, A. J. (1991) Evolution of energy metabolism. Biochem. J., 275: 81–6CrossRefGoogle ScholarPubMed
Braun, E. (1985) Comparative aspects of the urimary concentrating process. Renal Physiol., 8: 249–69Google Scholar
Brett, J. R. (1958) Implications and assessments of environmental stress. In Investigations of Fish-Power Problems (ed. P. A. Larkin), pp. 69–83. University of British Columbia, Vancouver
Bronson, F. H. (1989) Mammalian Reproductive Biology. The University of Chicago Press, Chicago. 325pp.
Bronson, F. H. (1998) Energy balance and ovulation: small cages versus natural habitats. Reprod. Fert. Dev., 10: 127–37CrossRefGoogle ScholarPubMed
Brooker, B. and Withers, P. C. (1994) Kidney structure and renal indices of dasyurid marsupials. Aust. J. Zool., 42: 163–76CrossRefGoogle Scholar
Brookhyser, K. M., Aulerich, R. J. and Vomachka, A. J. (1977) Adaptation of the orbital sinus bleeding technique to the chinchilla (Chinchilla laniger). Lab. Anim. Sci., 27: 251–4Google Scholar
Brothers, N. (1991) Albatross mortality and associated bait loss in the Japanese longline fishery in the Southern Ocean. Biol. Cons., 55: 255–68CrossRefGoogle Scholar
Brown, J. L., Wasser, S. K., Wildt, D. E., Graham, L. H. and Monfort, S. L. (1997) Faecal steroid analysis for monitoring ovarian and testicular function in diverse wild carnivore, primate and ungulate species. Int. J. Mamm. Biol., 62: 27–31Google Scholar
Brown, K. (2000) Ecologists spar over population counts of threatened Desert Tortoise. Sciences, N.Y., 290: 36CrossRefGoogle ScholarPubMed
Brown, M. B., Berry, K. H., Schumacher, I. M., Nagy, K. A., Christopher, M. M. and Klein, P. A. (1999) Seroepidemiology of upper respiratory tract disease in the desert tortoise in the western Mojave desert of California. J. Wildl. Dis., 35: 716–27CrossRefGoogle ScholarPubMed
Brownfield, M. S. and Wunder, W. (1976) Relative medullary area: a new structural index for estimating urinary concentrating capacity of mammals. Comp. Biochem. Physiol., 55A: 69–75CrossRefGoogle Scholar
Burt, W. H. (1943) Territoriality and home range concepts as applied to mammals. J. Mammal., 24: 346–52CrossRefGoogle Scholar
Burton, T. M. and Likens, G. E. (1975) Energy flow and nutrient cycling in salamander populations in the Hubbard Brook Experiment Forest, New Hampshire. Ecology, 58: 1068–80CrossRefGoogle Scholar
Buscarlet, L. A. (1974) The use of 22Na for determining the food intake of the migratory locust. Oikos, 25: 204–8CrossRefGoogle Scholar
Cade, T. J., Tobin, C. A. and Gold, A. (1965) Water economy and metabolism of estrildine finches. Physiol. Zool., 38: 9–33CrossRefGoogle Scholar
Campagna, C., Werner, R., Karesh, W., Marin, M., Koontz, F., Cook, R. and Koontz, C. (2001) Movements and location at sea of South American sea lions (Otaria flavescens). J. Zool., Lond., 257: 205–20CrossRefGoogle Scholar
Cannon, W. B. (1929) Organization for homeostasis. Physiol. Rev., 9: 399–429CrossRefGoogle Scholar
Cannon, W. B. (1939) The Wisdom of the Body. W. W. Norton & Co. Inc., New York. 350pp.
Carey, H. V. and Martin, S. L. (1996) Hibernation and the stress response. In Adaptations to the Cold (ed. F. Geiser, A. J. Hulbert and S. C. Nicol), pp. 319–25. The University of New England Press, Armidale, NSW
Carey, H. V., Frank, C. L. and Yee Aw, T. (2000) Cellular response to metabolic stress in hibernating mammals. In Life in the Cold: Eleventh International Hibernation Symposium (ed. G. Heldmaier and M. Klingenspor), pp. 339–46. Springer-Verlag, Berlin
Carnegie, D. W. (1898) Spinifex and Sand. Arthur Pearson, London
Case, T. J. (1976) Seasonal aspects of thermoregulatory behavior in the chuckwalla, Sauromalus obesus (Reptilia, Lacertilia, Iguanidae). J. Herp., 10: 85–95CrossRefGoogle Scholar
Castellini, M. A., Murphy, B. J., Fedak, M., Ronald, K., Gofton, N. and Hochachka, P. W. (1985) Potentially conflicting metabolic demands of diving and exercise in seals. J. Appl. Physiol., 58: 392–9CrossRefGoogle ScholarPubMed
Caughley, G. (1977) Analysis of Vertebrate Populations. Tom Wiley & Sons, Inc., London. 234pp.
Caughley, G. (1994) Directions in conservation biology. J. Anim. Ecol., 63: 215–44CrossRefGoogle Scholar
Caughley, G. and Gunn, A. (1996) Conservation Biology in Theory and Practice. Blackwell Science, Cambridge, Massachusetts, USA
Caughley, G. and Sinclair, A. R. E. (1994) Wildlife Ecology and Management. Blackwell Science, Cambridge, Massachusetts, USA. 334pp.
Cavigelli, S. A. (1999) Behvioral patterns associated with fecal cortisol levels in free-ranging ring-tailed lemurs, Lemur catta. Anim. Behav., 57: 935–44CrossRefGoogle Scholar
Chapman, T. E. and McFarland, L. Z. (1971) Water turnover of coturnix quail with individual observations on a burrowing owl, Petz conure and vulturine fish eagle. Comp. Biochem. Physiol., 39A: 653–6CrossRefGoogle Scholar
Chappell, M. A., Shoemaker, V. H., Janes, D. N., Maloney, S. K. and Butcher, T. L. (1993) Energetics of foraging in breeding Adélie penguins. Ecology, 74: 2450–61CrossRefGoogle Scholar
Chard, T. (1978) An Introduction to Radioimmunoassay and Related Techniques, North Holland Publishing Company, Amsterdam, New York and Oxford. pp. 293–534
Chauvet, M. T., Coln, T., Hurpet, D., Chauvet, J. and Acher, R. (1983) A multigene family of vasopressin-like hormones? Identification of mesotocin, lysopressin and phenypressin in Australian macropods. Biochem. Biophys. Res. Commun., 116: 258–63CrossRefGoogle ScholarPubMed
Chauvet, M. T., Hurpet, D., Chauvet, J. and Acher, R. (1980) Phenypressin (Phe2-Arg8-vasopressin), a new neurohypophysial peptide found in marsupials. Nature (Lond.), 287: 640–2CrossRefGoogle Scholar
Cherel, Y. and Maho, Y. (1985) Five months of fasting in King penguin chicks: body mass loss and fuel metabolism. Am. J. Physiol., 249: R387–92Google ScholarPubMed
Cherel, Y., Weimerskirch, H. and Duhamel, G. (1996) Interactions between longline vessels and seabirds in Kerguelen waters and a method to reduce seabird mortality. Biol. Cons., 75: 63–70CrossRefGoogle Scholar
Christopher, M. M., Berry, K. H., Wallis, I. R., Nagy, K. A., Henen, B. T. and Peterson, C. C. (1999) Reference intervals and physiologic alterations in haematologic and biochemical values of free-ranging tortoises in the Mojave desert. J. Wildl. Dis., 35: 212–38CrossRefGoogle Scholar
Clarke, B. C. and Nicolson, S. W. (1994) Water, energy, and electrolyte balance in captive Namib sand-dune lizards (Angolosaurus skoogi). Copeia, 1994: 962–74CrossRefGoogle Scholar
Claus, R., Hoppen, H. O. and Karg, H. (1981) The secret of truffles: a steroidal pheromone. Experientia, 37: 1178–9CrossRefGoogle Scholar
Cockburn, A. and Lazenby-Cohen, K. A. (1992) Use of nest trees by Antechinus stuartii, a semelparous lekking marsupial. J. Zool., Lond., 226: 657–80CrossRefGoogle Scholar
Cogger, H. G. (1974) Thermal relations of the mallee dragon, Amphibolurus fordii (Lacertilia: Agamidae). Aust. J. Zool., 22: 319–39CrossRefGoogle Scholar
Cohen, D. D., Bradshaw, S. D., Katsaros, A., Tom, J. A. and Garton, D. (1984) The 18O(p,αo)15N Australian Institute of Physics} (ed. D. Bird). Canberra, Australia
Cohen, D. D., Katsaros, A. and Garton, D. (1986) Some characteristics of the 18O(p, α)15N reaction. Nucl. Instrum. Methods Phys. Res., B15: 555–8CrossRefGoogle Scholar
Cole, L. C. (1954) The population consequences of life history phenomena. Quart. Rev. Biol., 29: 103–37CrossRefGoogle ScholarPubMed
Colwell, E. K. (1974) Predictability, constancy, and contingency of periodic phenomena. Ecology, 55: 1148–53CrossRefGoogle Scholar
Corbett, J. L., Farrell, D. J., Leng, R. A., McClymont, G. L. and Young, B. A. (1971) Determination of the energy expenditure of penned and grazed sheep from estimates of carbon dioxide entry rate. Br. J. Nutr., 21: 277–86CrossRefGoogle Scholar
Costa, D. P., Dann, P. and Disher, W. (1986) Energy requirements of free-ranging Little penguins, Eudyptula minor. Comp. Biochem. Physiol., 85A: 135–8CrossRefGoogle Scholar
Costa, D. P., Kretzmann, M. and Thorson, P. H. (1989) Diving pattern and energetics of the Australian sea lion, Neophoca cinerea. Am. Zool., 29: 71A (Abstr.)Google Scholar
Costa, W. R., Nagy, K. A. and Shoemaker, V. H. (1976) Observations of the behavior of jackrabbits (Lepus californicus) in the Mojave Desert. J. Mammal., 57: 399–402CrossRefGoogle Scholar
Coward, W. A. and Cole, T. J. (1991) The doubly labelled water method for measurement of energy expenditure in humans: risks and benefits. In The Doubly Labelled Water Method: Technical Recommendations for Use in Humans (ed. R. G. Whitehead and A. Prentice), pp. 294–7. Report of an IDECG Working Group. Vienna, Austria
Cowles, R. B. and Bogert, C. M. (1944) A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist., 83: 265–96Google Scholar
Crawford, E. C. and Lasiewski, R. C. (1968) Oxygen consumption and respiratory evaporation of the emu and rhea. Condor, 70: 333–9CrossRefGoogle Scholar
Crocker, D. E., Gales, N. J. and Costa, D. P. (2001) Swimming speed and foraging strategies of New Zealand sea lions (Phocatros hookeri). J. Zool., Lond., 254: 267–77CrossRefGoogle Scholar
Croxall, J. and Gales, R. P. (1998) An assessment of the conservation status of albatrosses. In Ecology and Conservation of Albatrosses (ed. G. C. Robertson and R. P. Gales), pp. 46–66. Surrey Beatty and Sons, Chipping Norton, Australia
Croxall, J. P. (1984) Seabirds. In Antarctic Ecology (ed. R. M. Laws), pp. 531–618. Academic Press, New York
Croxall, J. P., Naito, Y., Kato, A., Rothery, P. and Briggs, D. R. (1991) Diving patterns and performance in the Antarctic blue-eyed shag Phalacrocorax atriceps. J. Zool., Lond., 225: 177–99CrossRefGoogle Scholar
Croxall, J. P. and Ricketts, C. (1983) Energy costs of incubation in the Wandering albatross Diomedea exulans. Ibis, 125: 33–9CrossRefGoogle Scholar
Crum, B. G., Williams, J. B. and Nagy, K. A. (1985) Can tritiated water-dilution space accurately predict total body water in chukar partridgesv. J. Appl. Physiol., 59: 1383–8CrossRefGoogle Scholar
Czekala, N. M. and Lasley, B. L. (1977) A technical note on sex determination in monomorphic birds using faecal steroid analysis. Int. Zool. Ybk, 17: 209–11CrossRefGoogle Scholar
Daan, S., Masman, D. and Groenewold, A. (1990) Avian basal metabolic rates; their association with body composition and energy expenditure. Am. J. Physiol., 259: R333–40Google ScholarPubMed
Dameron, G. W., Weingand, K. W., Duderstadt, J. M., Odioso, L. W., Dierckman, T. A., Schwecke, W. and Baran, K. (1992) Effect of bleeding site on clinical laboratory testing of rats: orbital venous plexus versus posterior vena cava. Lab. Anim. Sci., 42: 299–301Google ScholarPubMed
Dantzler, W. H. (1989) Comparative Physiology of the Vertebrate Kidney. Springer-Verlag, Heidelberg. 198pp.
Dantzler, W. H. and Schmidt-Nielsen, B. (1966) Excretion in fresh-water turtle (Pseudemys scripta) and desert tortoise (Gopherus agassizii). Am. J. Physiol., 210: 198–210Google Scholar
Davies, S. J. J. F. (1984) Nomadism as a response to desert conditions in Australia. J. Arid Envts, 7: 183–96Google Scholar
Davis, D. E. (1982) CRC Handbook of Census Methods for Terrestrial Vertebrates. CRC Press, Boca Raton, Florida. 397 pp.
Davis, R. W., Croxall, J. P. and O'Connell, M. J. (1989) The reproductive energetics of Gentoo (Pygoscelis papua) and Macaroni (Eudyptes chrysolophus) penguins at South Georgia. J. Anim. Ecol., 58: 59–74CrossRefGoogle Scholar
Dawson, T. J. and Schmidt-Nielsen, K. (1966) Effect of thermal conductance on water economy in the antelope jackrabbit, Lepus alleni. J. Cell Physiol., 67: 463–72CrossRefGoogle Scholar
Dawson, W. R. (1984) Physiological studies of desert birds: present and future considerations. J. Arid Envts, 7: 133–56Google Scholar
de Castri, F. (1981) Mediterranean shrublands of the world. In Ecosystems of the World: II. Mediterranean-Type Shrublands (ed. F. di Castri, D. W. Goodall and R. L. Specht), pp. 1–52. Elsevier, Amsterdam
Rouffignac, C., Bankir, L. and Roinel, N. (1981) Renal function and concentrating ability in a desert rodent: the gundi (Ctenodactylus vali). Pflügers Arch., 390: 138–44CrossRefGoogle Scholar
Rouffignac, C. and Morel, F. (1969) Micropuncture study of water, electrolytes and urea movements along the loop of Henle in Psammomys. J. Clin. Invest., 48: 474–86CrossRefGoogle ScholarPubMed
Rouffignac, C. and Morel, F. (1973) Étude comparée du renouvellement de l'eau chez quatre espèces de rongeurs, dont deux espèces d'habitat désertique. J. Physiol. (Paris), 58: 309–22Google Scholar
Witt, C. B. (1967) Behavioral thermoregulation in the desert iguana. Sciences, N. Y., 158: 809–10Google Scholar
Degen, A. A. (1994) Field metabolic rates of Acomys russatus and Acomys cahirinus and a comparison with other rodents. Isr. J. Zool., 40: R60–5Google Scholar
Degen, A. A. (1997) Ecophysiology of Small Desert Mammals. Springer, Berlin, New York. ⅻ + 296pp.
Degen, A. A., Hazan, A., Kam, M. and Nagy, K. A. (1991) Seasonal water influx and energy expenditure of free-living sand rats. J. Mammal., 72: 652–7CrossRefGoogle Scholar
Degen, A. A., Kam, M., Hazan, A. and Nagy, K. A. (1986) Energy expenditure and water flux in three sympatric desert rodents. J. Anim. Ecol., 55: 421–9CrossRefGoogle Scholar
Degen, A. A., Kam, M. and Jurgrau, D. (1988) Energy requirements of fat sand rats (Psammomys obesus) and their efficiency of utilization of the saltbush Atriplex halmus for maintenance. J. Zool., Lond., 215: 443–52CrossRefGoogle Scholar
Degen, A. A., Khokhlova, I. S., Kam, M. and Nagy, K. A. (1997) Body size, granivory and seasonal dietary shifts in desert gerbilline rodents. Funct. Ecol., 11: 53–9CrossRefGoogle Scholar
Degen, A. A., Pinshow, B. and Alkon, P. U. (1982) Water flux in Chukar partridges (Alectoris chukar) and a comparison with other birds. Physiol. Zool., 55: 64–71CrossRefGoogle Scholar
Degen, A. A., Pinshow, B. and Alkon, P. U. (1985) Summer water turnover rates in free-living Chukars and Sand partridges in the Negev Desert. Condor, 85: 333–7CrossRefGoogle Scholar
Degen, A. A., Pinshow, B. and Ilan, M. (1990) Seasonal water flux, urine and plasma osmotic concentrations in free-living sand rats feeding solely on saltbush. J. Arid Envts, 18: 59–66Google Scholar
Degen, A. A., Pinshow, B. and Kam, M. (1992) Field metabolic rates and water influxes of two sympatric Gerbillidae: Gerbillus allenbyi and G. pyramidum. Oecologia, 90: 586–90CrossRefGoogle Scholar
Demeneix, B. A. and Henderson, N. E. (1978a) Serum T4 and T3 in active and torpid ground squirrels, Spermophilus richardsoni. Gen. Comp. Endocrinol., 35: 77–85CrossRefGoogle Scholar
Demeneix, B. A. and Henderson, N. E. (1978b) Thyroxine metabolism in active and torpid ground squirrels, Spermophilus richardsoni. Gen. Comp. Endocrinol., 35: 86–92CrossRefGoogle Scholar
Depocas, F., Hart, J. S. and Fisher, H. D. (1971) Sea water drinking and water flux in starved and fed Harbour seals. Can. J. Physiol. Pharmacol., 49: 53–62CrossRefGoogle Scholar
Diamond, J. M. (1982) Big-bang reproduction and ageing in male marsupial mice. Nature (Lond.), 298: 115–16CrossRefGoogle ScholarPubMed
Diaz, G. B., Ojeda, R. A. and Dacar, M. (2001) Water conservation in the South American desert mouse opossum, Thylamys pusilla (Didelphimorphia, Didelphidae). Comp. Biochem. Physiol., 130A: 323–30CrossRefGoogle Scholar
Dickman, C. R. (1993) Evolution of semelparity in male dasyurid marsupials: a critique and an hypothesis of sperm competition. In Biology and Management of Australasian Carnivorous Marsupials (ed. M. Roberts, J. Carnio, G. Crawshaw and M. Hutchins), pp. 25–38. Metropolitan Toronto Zoo, Toronto
Dickman, C. R. and Braithwaite, R. W. (1992) Postmating mortality of males in dasyurid marsupials, Dasyurus and Parantechinus. J. Mammal., 73: 143–7CrossRefGoogle Scholar
Dickman, C. R., Predavec, M. and Downey, F. J. (1995) Long-range movements of small mammals in arid Australia: implications for land management. J. Arid Envts, 31: 441–52CrossRefGoogle Scholar
Dobzhansky, T. (1953) Biology and evolution. Am. Biol. Teacher, 25: 125–9Google Scholar
Dodson, P. (1978) On the use of ratios in growth studies. Syst. Zool., 27: 62–7CrossRefGoogle Scholar
Downs, C. T. and Perrin, M. R. (1990) Field water-turnover rates of three Gerbillurus species. J. Arid Envts., 19: 199–208Google Scholar
Dunlap, K. D. and Wingfield, J. C. (1995) External and internal influences on indices of physiological stress. I. Seasonal and population variation in adrenocortical secretion of free-living lizards, Sceloporus occidentalis. J. Exp. Zool., 271: 36-46CrossRefGoogle ScholarPubMed
Eales, J. G. (1997) Iodine metabolism and thyroid-related functions in organisms lacking thyroid follicles: are thyroid hormones also vitamins?Proc. Soc. Exp. Biol. Med., 214: 302–17CrossRefGoogle ScholarPubMed
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R. and Mearns, L. O. (2000) Climate extremes: Observations, modeling and impacts. Sciences, N. Y., 289: 2068–74CrossRefGoogle ScholarPubMed
Ekins, R. P. (1974) Basic principles and theory. In Radioimmunoassay and Saturation Analysis (ed. P. H. Sönksen), pp. 3–11. British Medical Bulletin vol. 30, no. 1. The British Council, London
Eldridge, M. D. B., King, J. M., Loupis, A. K., Spencer, P. B. S., Taylor, A. C., Pope, L. C. and Hall, G. P. (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the Black-Footed rock-wallaby. Cons. Biol., 13: 531–41CrossRefGoogle Scholar
Else, P. L. and Hulbert, A. J. (1987) Evolution of mammalian endothermic metabolism: “leaky” membranes as a source of heat. Am. J. Physiol., 253: R1–7Google ScholarPubMed
Emerson, S. B. and Hess, D. L. (1996) The role of androgens in opportunistic breeding, tropical frogs. Gen. Comp. Endocrinol., 103: 220–30CrossRefGoogle ScholarPubMed
Fairclough, R. J., Rabjohns, M. A. and Peterson, A. J. (1977) Chromatographic separation of androgens, estrogens and progestogens on hydroxyalkoxypropyl-Sephadex (Lipidex). J. Chromatography, 133: 412–14CrossRefGoogle Scholar
Fancy, S. G., Blanchard, J. M. and Holleman, D. F. (1986) Validation of doubly-labeled water method using a ruminant. Am. J. Physiol., 251: R143–9Google ScholarPubMed
Fänge, R., Schmidt-Nielsen, K. and Robinson, M. (1958) Control of secretion from the avian salt gland. Am. J. Physiol., 195: 321–6Google ScholarPubMed
Fänge, R. and Schmidt-Nielsen, K. O., H. (1958) The salt gland of the Herring Gull. Biol. Bull., 115: 162–71CrossRefGoogle Scholar
Feder, M. E. and Burggren, W. W. (eds) (1992) Environmental Physiology of Amphibians. University of Chicago Press, Chicago
Felsenstein, J. (1985) Phylogenies and the comparative method. Am. Nat., 125: 1–15CrossRefGoogle Scholar
Felsenstein, J. (1988) Phylogenies and the comparative method. A. Rev. Ecol. Syst., 19: 445–71CrossRefGoogle Scholar
Fernandez, P., Anderson, D. J., Sievert, P. R. and Huyvaert, K. P. (2001) Foraging destinations of three low-latitude albatross (Phoebastria) species. J. Zool., Lond., 254: 391–404CrossRefGoogle Scholar
Fisher, C. D., Lindgren, E. and Dawson, W. R. (1972) Drinking patterns and behaviour of Australian desert birds in relation to their ecology and abundance. Condor, 74: 111–36CrossRefGoogle Scholar
Flinders, M. (1814) A Voyage to Terra Australis. W. Nicol, London
Flint, E. N. and Nagy, K. A. (1984) Flight energetics of free-living Sooty Terns. Auk, 101: 288–94Google Scholar
Frankel, A. I., Cook, B., Graber, J. and Nalbandov, A. V. (1967) Determination of corticosterone in plasma by fluorimetric techniques. Endocrinology, 80: 181–94CrossRefGoogle Scholar
Friend, G. R. (1984) Relative efficiency of two pitfall-drift fence systems for sampling small vertebrates. Aust. Zool., 21: 423–33Google Scholar
Friend, G. R., Smith, G. T., Mitchell, D. S. and Dickman, C. R. (1989) Influence of pitfall and drift fence design on capture rates of small vertebrates in semi-arid habitats of Western Australia. Aust. Wildl. Res., 16: 1–10CrossRefGoogle Scholar
Gabe, M., Agid, R., Martoja, M., Saint Girons, M.-C. and Saint Girons, H. (1964) Données histophysiologiques et biochimiques sur l'hibernation et le cycle annuel chez Eliomys quercinus L.Arch. Biol. Liège, 75: 1–87Google Scholar
Gabrielsen, G. W., Mehlum, F. and Nagy, K. A. (1987) Daily energy expenditure and energy utilisation of free-ranging Black-legged kittiwakes. Condor, 89: 126–32CrossRefGoogle Scholar
Gadgil, M. and Bossert, W. H. (1970) Life historical consequences of natural selection. Am. Nat., 104: 1–24CrossRefGoogle Scholar
Gales, N. J. and Costa, D. P. (1997) The Australian sea lion: a review of an unusual life history. In Marine Mammal Research in the Southern Hemisphere (ed. M. A. Hindell and C. Kemper), vol. 1, pp. 78–87. Surrey Beatty & Sons, Chipping Norton, Sydney
Gales, N. J., Shaughnessy, P. D. and Dennis, T. E. (1994) Distribution, abundance and breeding cycle of the Australian sea lion Neophoca cinerea (Mammalia: Pinnipedia). J. Zool., Lond., 234: 353–70CrossRefGoogle Scholar
Gales, N. J., Williamson, P., Higgins, L. V., Blackberry, M. A. and James, I. (1997) Evidence for a postimplantation period in the Australian sea lion (Neophoca cinerea). J. Reprod. Fert., 111: 159–63CrossRefGoogle Scholar
Gales, R. (1989) Validation of the use of tritiated water, doubly labelled water, and 22Na for estimating food, energy, and water intake in little penguins, Eudyptula minor. Physiol. Zool., 62: 147–69CrossRefGoogle Scholar
Gales, R. and Green, B. (1990) The annual energetics cycle of little penguins (Eudyptula minor). Ecology, 71: 2297–312CrossRefGoogle Scholar
Gales, R., Green, B., Libke, J., Newgrain, K. and Pemberton, D. (1993) Breeding energetics and food requirements of gentoo penguins (Pygoscelis papua) at Heard and Macquarie Islands. J. Zool., Lond., 231: 125–39CrossRefGoogle Scholar
Gallagher, K. J., Morrison, D. A., Shine, R. and Grigg, G. C. (1983) Validation and use of 22Na turnover to measure food intake in free-ranging lizards. Oecologia, 60: 76–82CrossRefGoogle ScholarPubMed
Gans, C. (1979) Momentarily excessive construction as the basis for protoadaptation. Evolution, 33: 227–33CrossRefGoogle ScholarPubMed
Garavanta, C. A. M., Wooller, R. D. and Richardson, K. C. (2000) Movement patterns of honey possums, Tarsipes rostratus, in the Fitzgerald River National Park, Western Australia. Wildl. Res., 27: 179–83CrossRefGoogle Scholar
Garland, T. Jr., Harvey, P. H. and Ives, A. R. (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol., 41: 18–32CrossRefGoogle Scholar
Gauthier, M. and Thomas, D. W. (1990) Evaluation of the accuracy of 22Na and tritiated water for the estimation of food consumption and fat reserves in passerine birds. Can. J. Zool., 68: 1590–4CrossRefGoogle Scholar
Geiser, F. (1990) Influence of polyunsaturated and saturated dietary lipids on adipose tissue, brain and mitochondrial fatty acid composition of a mammalian hibernator. Biochim. Biophys. Acta, 1046: 159–66CrossRefGoogle ScholarPubMed
Geiser, F. (1991) The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty acid composition of tissues and membranes of the deer mouse Peromyscus maniculatus. J. Comp. Physiol. B, 161: 590–7CrossRefGoogle ScholarPubMed
Geiser, F. (1994) Hibernation and daily torpor in marsupials: a review. Aust. J. Zool., 42: 1–16CrossRefGoogle Scholar
Geiser, F. and Broome, L. S. (1991) Hibernation in the pygmy possum Burramys parvus (Marsupialia). J. Zool., Lond., 223: 593–602CrossRefGoogle Scholar
Geiser, F., Firth, B. T. and Seymour, R. S. (1992) Polyunsaturated dietary lipids lower the selected body temperature of a lizard. J. Comp. Physiol. B, 162: 1–4CrossRefGoogle ScholarPubMed
Geiser, F., Hulbert, A. J. and Nicol, S. C. (eds) (1996) Adaptations to the Cold. University of New England Press, Armidale, NSW. 404 pp.
Geiser, F. and Kenagy, G. J. (1987) Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. Am. J. Physiol., 252: R897–901Google Scholar
Geiser, F. and Kenagy, G. J. (1988) Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiol. Zool., 61: 442–9CrossRefGoogle Scholar
Geiser, F. and Ruf, T. (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol. Zool., 68: 935–66CrossRefGoogle Scholar
Geiser, F., Stahl, B. and Leramonth, R. P. (1992) The effect of dietary fatty acids in the pattern of torpor in a marsupial. Physiol. Zool., 65: 1236–45CrossRefGoogle Scholar
Gentry, R. L. (1981) Seawater drinking in eared seals. Comp. Biochem. Physiol., 8A: 81–6CrossRefGoogle Scholar
Gettinger, R. D. (1983) Use of doubly labeled water (3H218O) for determination of H2O flux and CO2 production by a mammal in a humid environmentv. Oecologia, 59: 54–7CrossRefGoogle Scholar
Gilligan, D. M., Woodworth, L. M., Montgomery, M. E., Nurthen, R. K., Briscoe, D. A. and Frankham, R. (2000) Can fluctuating asymmetry be used to detect inbreeding and loss of genetic diversity in endangered populations?Anim. Cons., 3: 97–104CrossRefGoogle Scholar
Goldstein, D. L. (1993) Renal glomerular and tubular responses to saline infusion in a marine bird, Leach's storm petrel. J. Comp. Physiol. B, 163: 167–73CrossRefGoogle Scholar
Goldstein, D. L. and Bradshaw, S. D. (1998) Water and sodium regulation of water and sodium balance in the field by Australian honeyeaters (Aves: Meliphagidae). Physiol. Zool., 71: 214–25CrossRefGoogle Scholar
Goldstein, D. L. and Nagy, K. A. (1985) Resource utilization by desert quail: time and energy, food and water. Ecology, 66: 378–87CrossRefGoogle Scholar
Goldstein, D. L. and Rothschild, E. L. (1993) Daily rhythms in renal and cloacal excretion by captive and wild song sparrows. Physiol. Zool., 66: 708–19CrossRefGoogle Scholar
Gould, S. J. and Lewontin, R. C. (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B, 205: 581–98CrossRefGoogle Scholar
Gould, S. J. and Vrba, E. S. (1982) Exaptation – a missing term in the science of form. Paleobiology, 8: 4–15CrossRefGoogle Scholar
Gower, D. B. and Ruparelia, B. A. (1993) Olfaction in humans with special reference to odorous 16-androstenes: their occurrence, perception and possible social, psychological and sexual impact. J. Endocrinol., 137: 167–87CrossRefGoogle ScholarPubMed
Goymann, W., Mostl, E., Van't Hof, T., East, M. L. and Hofer, H. (1999) Noninvasive fecal monitoring of glucocorticoids in spotted hyenas, Crocuta crocuta. Gen. Comp. Endocrinol., 114: 340–8CrossRefGoogle ScholarPubMed
Grant, B. W. and Dunham, A. E. (1998) Thermally imposed time constraints on the activity of the desert lizard Sceloporus merriami. Ecology, 69: 167–76CrossRefGoogle Scholar
Gray, D. A. and Simon, E. (1983) Mammalian and avian antidiuretic hormone: studies related to possible species variation in osmoregulatory systems. J. Comp. Physiol. B, 151: 241–6CrossRefGoogle Scholar
Gray, J. M., Yarian, D. and Remenofsky, M. (1990) Corticosterone, foraging behavior and metabolism in dark-eyed juncos, Junco hyemalis. Gen. Comp. Endocrinol., 79: 375–84CrossRefGoogle ScholarPubMed
Green, B. and Brothers, N. (1989) Water and sodium turnover and estimated food consumption rates in free-living Fairy Prions (Pachyptila turtur) and common diving petrels (Pelecanoides urinatrix). Physiol. Zool., 62: 702–15CrossRefGoogle Scholar
Green, B., Brothers, N. and Gales, R. (1988) Water, sodium and energy turnover in free-living little penguins, Eudyptula minor. Aust. J. Zool., 36: 429–40CrossRefGoogle Scholar
Green, B. and Eberhard, I. (1983) Water and sodium intake, and estimated food consumption, in free-living Eastern quolls, Dasyurus viverrinus. Aust. J. Zool., 31: 871–80CrossRefGoogle Scholar
Green, B., Griffiths, M. and Newgrain, K. (1992) Seasonal patterns in water, sodium, and energy turnover in free-living echidnas, Tachyglossus aculeatus (Mammalia: Monotremata). J. Zool., Lond., 227: 351–66CrossRefGoogle Scholar
Green, B., King, D. and Butler, W. H. (1986) Water, sodium and energy turnover in free-living Perenties, Varanus giganteus. Aust. Wildl. Res., 13: 589–95CrossRefGoogle Scholar
Green, B., King, D. and Bradley, A. J. (1989) Water and energy metabolism and estimated food consumption rates of free-living Wambengers, Phascogale calura (Marsupialia: Dasyuridae). Aust. Wildl. Res., 16: 501–7CrossRefGoogle Scholar
Greenwald, L. (1989) The significance of renal medullary thickness. Physiol. Zool., 62: 1005–14CrossRefGoogle Scholar
Greer, A. E. (1990) The Biology and Evolution of Australian Lizards. Surrey Beatty & Sons, Sydney
Gregory, P. T. (1982) Reptilian hibernation. In The Biology of the Reptilia (ed. C. Gans and H. Pough), pp. 53–154. Academic Press, New York
Grémillet, J. H. and Plos, A. L. (1994) The use of stomach temperature records for the calculation of daily food intake in cormorants. J. Exp. Biol., 189: 105–15Google Scholar
Grenot, C. J. (1967) Observations physio-écologiques sur la régulation thermique chez le lézard agamide Uromastix acanthinurus Bell. Bull. Soc. Zool. France, 92: 51–66Google Scholar
Grenot, C. J. (1973) Sur la biologie d'un rongeur héliophile du Sahara, le “Goundi” (Ctenodactylidae). Acta Tropica, 30: 237–50Google Scholar
Grenot, C. J., Garcin, L. and Tsèrè-Pagès, H. (1996) Cold hardiness and behaviour of the European common lizard, from French populations in winter. In Adaptations to the Cold (ed. F. Geiser, A. J. Hulbert and S. C. Nicol), pp. 115–21. University of New England Press, Armidale, NSW
Grigg, G. and Beard, L. (2000) Hibernation by echidnas in mild climates: hints about the evolution of endothermy. In Life in the Cold: Eleventh International Hibernation Symposium (ed. G. Heldmaier and M. Klingenspor), pp. 5–19. Springer-Verlag, Berlin
Grigg, G., Beard, L. A. and Augee, M. L. (1989) Hibernation in a montreme, the echidna (Tachyglossus auculeatus). Comp. Biochem. Physiol., 92A: 609–12CrossRefGoogle Scholar
Grossman, C. J. (1984) Regulation of the immune system by sex steroids. Endocr. Rev., 5: 435–55CrossRefGoogle ScholarPubMed
Guppy, M., Bradshaw, S. D., Fergusson, B., Hansen, I. A. and Atwood, C. (1987) Metabolism in lizards: low lactate turnover and advantages of heterothermy. Am. J. Physiol., 22: R77–82Google Scholar
Guppy, M., Hill, R. D., Schneider, R. C., Qvist, J., Liggins, G. C., Zapol, W. M. and Hochachka, P. W. (1986) Microcomputer-assisted metabolic studies of voluntary diving of Weddell seals. Am. J. Physiol., 250: R175–87Google ScholarPubMed
Guppy, M. and Withers, P. C. (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol. Rev., 74: 1–40CrossRefGoogle ScholarPubMed
Hackel, D. B., Schmidt-Nielsen, K., Haines, H. and Mikat, E. (1965) Diabetes mellitus in the sand rat (Psammomys obesus). Lab. Exper., 14: 200–7Google Scholar
Haines, H., Hackel, D. B. and Schmidt-Nielsen, K. (1965) Experimental diabetes mellitus induced by diet in the sand rat. Am. J. Physiol., 208: 297–300Google ScholarPubMed
Halpern, B. N. and Pacaud, A. (1951) Technique de prélèvement d'échantillons de sang chez les petits animaux de laboratoire par ponction de plexus opthalmique. C.R. Soc. Biol. (Paris)., 141: 1465–7Google Scholar
Hamilton, W. J. I. and Coetzee, C. G. (1969) Thermoregulatory behaviour of the vegetarian lizard Angolosaurus skoogi on the vegetationless northern Namib desert dunes. Scientific Papers of the Namib Desert Research Station, no. 47, pp. 95–103Google Scholar
Harper, J. M. and Austad, S. N. (2001) Effect of capture and season on fecal glucocorticoid levels in Deer Mice (Permoyscus maniculatus) and Red-Backed Voles (Clethrionomys gapperi). Gen. Comp. Endocrinol., 123: 337–44CrossRefGoogle Scholar
Harris, S., Cresswell, W. J., Forde, P. G., Trewhella, W. J., Woollard, T. and Wray, S. (1990) Home range analysis using radio-tracking data – a review of problems and techniques particularly applied to the study of mammals. Mamm. Rev., 20: 97–123CrossRefGoogle Scholar
Harvey, L. A., Propper, C. R., Woodley, S. K. and Moore, M. C. (1997) Reproductive endocrinology of the explosively breeding Desert Spadefoot Toad, Scaphiopus couchii. Gen. Comp. Endocrinol., 105: 102–13CrossRefGoogle ScholarPubMed
Harvey, P. H. and Pagel, M. D. (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, London. 239pp.
Hayden, P. (1966) Seasonal occurrence of jackrabbits on Jackass Flat, Nevada. J. Wildl. Man., 30: 835–8CrossRefGoogle Scholar
Hazon, N. and Balemont, R. J. (1998) Endocrinology. In The Physiology of Fishes (ed. D. H. Evans), pp. 441–88. CRC Press, Boca Raton, Florida
Heatwole, H. (1970) Thermal ecology of the desert dragon, Amphibolurus inermis. Ecol. Monogr., 40: 425–57CrossRefGoogle Scholar
Heatwole, H. (1976) Reptile Ecology. University of Queensland Press, Queensland, Australia. 178pp.
Heatwole, H. (1984) Adaptations of amphibians to aridity. In Arid Australia (ed. H. G. Cogger and E. E. Cameron), pp. 177–222. Australian Museum, Sydney
Hedenström, A. (1993) Migration and soaring or flapping flight in birds: the relative importance of energy cost and speed. Phil. Trans. R. Soc. Lond. B, 342: 353–61CrossRefGoogle Scholar
Hedges, N. A., Gaskin, D. E. and Smith, G. J. D. (1979) Rencular morphology and renal vascular system of the Harbour porpoise Phocoena phocoena (L.). Can. J. Zool., 57: 868–75CrossRefGoogle Scholar
Heisinger, J. F. and Breitenbach, R. P. (1969) Renal structural characteristics as indexes of renal adaptation for water conservation in the genus Sylvilagus. Physiol. Zool., 42: 160–72CrossRefGoogle Scholar
Heldmaier, G. and Klingenspoor, M. (eds) (2000) Life in the Cold. Springer-Verlag, Berlin
Heldmaier, G. and Ruf, T. (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J. Comp. Physiol. B, 162: 696–706CrossRefGoogle ScholarPubMed
Henen, B. T. (1997) Seasonal and annual energy budgets of female desert tortoises (Gopherus agassizii). Ecology, 78: 283–96CrossRefGoogle Scholar
Henen, B. T., Peterson, C. C., Wallis, I. R., Berry, K. H. and Nagy, K. A. (1998) Effects of climatic variation on field metabolism and water relations of desert tortoises. Oecologia, 117: 365–73CrossRefGoogle ScholarPubMed
Henle, K. (1992) Predation pressure, food availability, thermal environment, and precision of thermoregulation in a desert population of the skink Morethia boulengeri, with a comment on measuring thermoregulatory precision. Zool. Jahrb. Abt. Syst., 119: 405–12Google Scholar
Henzell, R. P. (1972) Adaptation to aridity in lizards of the Egernia whitei species group. PhD thesis, University of Adelaide
Herd, R. M. (1985) Estimating food intake by captive emus, Dromaius novaehollandiae, by means of sodium-22 turnover. Aust. Wildl. Res., 12: 455–60CrossRefGoogle Scholar
Hertz, P. E., Huey, R. B. and Stevenson, R. D. (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am. Nat., 142: 796–818CrossRefGoogle ScholarPubMed
Hewitt, S. (1981) Plasticity of renal function in the Australian desert rodent, Notomys alexis. Comp. Biochem. Physiol., 69A: 297–304CrossRefGoogle Scholar
Hiebert, S. M., Remenofsky, M., Salvante, K., Wingfield, J. and Gass, C. L. (2000) Noninvasive methods for measuring and manipulating corticosterone in hummingbirds. Gen. Comp. Endocrinol., 120: 235–47CrossRefGoogle ScholarPubMed
Higgins, L. V. (1993) The nonannual, nonseasonal breeding cycle of the Australian sea lion, Neophoca cinerea. J. Mammal., 74: 270–4CrossRefGoogle Scholar
Hillyard, S. D. (1975) The role of antidiuretic hormones in the water economy of the Spadefoot toad, Scaphiopus couchi. Physiol. Zool., 46: 242–51CrossRefGoogle Scholar
Hillyard, S. D. (1976) The movement of soil water across the isolated amphibian skin. Copeia, 1976: 314–20CrossRefGoogle Scholar
Hindell, M. A., Slip, D. J., Burton, H. R. and Bryden, M. M. (1992) Physiological implications of continuous and deep dives of the Southern elephant seal (Mirounga leonina). Can. J. Zool., 70: 370–9CrossRefGoogle Scholar
Hoff, K. S. and Hillyard, S. D. (1993) Inhibition of cutaneous absorption in dehydrated toads by Saralasin is associated with changes in barometric pressure. Physiol. Zool., 66: 89–98CrossRefGoogle Scholar
Hoffman, K. H., Neuhäuser, T., Gerstenlauer, B., Weidner, K. and Lenz, M. (1993) Thermal control of endocrine events in cricket reproduction (Gryllus bimaculatus de Geer). In Perspectives in Comparative Endocrinology (ed. K. G. Davey, R. E. Peter and S. S. Tobe), pp. 561–7. National Resources Council of Canada, Ottawa
Holloway, J. C. and Geiser, F. (1995) Influence of torpor on daily energy expenditure of the dasyurid marsupial Sminthopsis crassicaudata. Comp. Biochem. Physiol., 112A: 59–66CrossRefGoogle Scholar
Holloway, J. C. and Geiser, F. (2001) Seasonal changes in the thermoenergetics of the marsupial sugar glider, Petaurus breviceps. J. Comp. Physiol. B, 171: 643–50Google ScholarPubMed
Holmes, W. N. and Phillips, J. G. (1985) The avian salt gland. Biol. Rev., 60: 213–56CrossRefGoogle Scholar
Hong, S. K., Elsner, R., Claybaugh, J. R. and Ronald, K. (1982) Renal functions of the Baikal seal Pusa sibirica and Ringed seal Pusa hispida. Physiol. Zool., 55: 289–99CrossRefGoogle Scholar
Horowitz, M. and Borut, A. (1970) Effect of acute dehydration on body fluid compartments in three rodent species: Rattus norvegicus, Acomys cahirinus and Meriones crassus. Comp. Biochem. Physiol., 35: 283–90CrossRefGoogle Scholar
Horowitz, M. and Borut, A. (1973) Blood volume regulation in dehydrated rodents: plasma colloid osmotic pressure, total osmotic pressure and electrolytes. Comp. Biochem. Physiol., 44A: 1261–5CrossRefGoogle Scholar
Horowitz, M. and Borut, A. (1975) Blood volume regulation in dehydrated rodents: plasma protein turnover and sedimentation coefficients. Comp. Biochem. Physiol., 51A: 827–31CrossRefGoogle Scholar
Horowitz, M. and Borut, A. (1994) The Spiny mouse (Acomys cahirinus) – a rodent prototype for studying plasma volume regulation during thermal dehydration. Isr. J. Zool., 40: 117–25Google Scholar
Houser, D. S. and Costa, D. P. (2001) Protein catabolism in suckling and fasting northern elephant seal pups (Microunga angustirostris). J. Comp. Physiol. B, 171: 635–42Google Scholar
Hudson, J. W. (1981) Role of the endocrine glands in hibernation with special reference to the thyroid gland. In Survival in the Cold: Hibernation and Other Adaptations (ed. X. J. Musacchia and L. Jansky), pp. 33–54. Elsevier/North-Holland, New York
Huey, R. B. (1982) Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (ed. C. Gans and F. H. Pough), pp. 25–91. Academic Press, New York
Huey, R. B. and Kingsolver, J. G. (1993) Evolution of resistance to high temperature in ectotherms. Am. Nat., 142: S21–46CrossRefGoogle Scholar
Huey, R. B., Pianka, E. R. and Schoener, T. W. (eds) (1983) Lizard Ecology. Harvard University Press, Cambridge, Massachusetts. 501pp.
Hughes, M. R. (1995) Responses of gull kidneys and salt glands to NaCl loading. Can. J. Physiol. Pharmacol., 73: 1727–32CrossRefGoogle ScholarPubMed
Hughes, M. R., Roberts, J. R. and Thomas, B. R. (1987) Total body water and its turnover in free-living nestling glaucous-winged gulls with a comparison of body water and water flux in avian species with and without salt glands. Physiol. Zool., 60: 481–91CrossRefGoogle Scholar
Hui, C. (1981) Seawater consumption and water flux in the common dolphin Delphinus delphis. Physiol. Zool., 54: 430–40CrossRefGoogle Scholar
Hulbert, A. J. (1987) Thyroid hormones, membranes and the evolution of endothermy. In Advances in Physiological Research (ed. H. McLennan, J. R. Ledsome, C. H. S. McIntosh and D. R. Jones), pp. 305–19. Plenum Publishing Corp, New York
Hulbert, A. J. (2000) Thyroid hormones and their effects: a new perspective. Biol. Rev., 75: 519–631CrossRefGoogle ScholarPubMed
Hulbert, A. J. and Else, P. L. (1981) Comparison of the “mammal machine” and the “reptile machine”: energy use and thyroid activity. Am. J. Physiol., 241: R350–6Google ScholarPubMed
Hulbert, A. J. and Else, P. L. (1989) Evolution of mammalian endothermic metabolism: mitochondrial activity and cell composition. Am. J. Physiol., 256: R63–9Google ScholarPubMed
Hulbert, A. J. and Else, P. L. (1990) The cellular basis of endothermic metabolism: a role for “leaky” membranes. News Physiol. Sci., 5: 25–8Google Scholar
Hulbert, A. J. and Else, P. L. (1999) Membranes as possible pacemakers of metabolism. J. Theor. Biol., 199: 257–74CrossRefGoogle Scholar
Hulbert, A. J. and Else, P. L. (2000) Mechanisms underlying the cost of living in animals. A. Rev. Physiol., 62: 207–35CrossRefGoogle ScholarPubMed
Hume, I. D. (1999) Marsupial Nutrition. Cambridge University Press, Cambridge. 434pp.
Hutchinson, G. E. (1978) An Introduction to Population Ecology. Yale University Press, New Haven and London. 260pp.
Hytten, F. E. (1976) Is viviparity the best means of reproduction?Acta Paed. Acad. Sci. Hung., 17: 1–8Google ScholarPubMed
Imbert, M. and Rouffignac, C. (1976) Role of sodium and urea in the renal concentrating mechanism in Psammomys obesus. Pflügers Arch., 361: 107–14CrossRefGoogle ScholarPubMed
Izumi, Y., Sugiyama, F., Sugiyama, Y. and Yagami, K. (1993) Comparison between the blood from orbital sinus and heart in analyzing plasma biochemical values – increase of plasma enzyme values in the blood from orbital sinus. Jikken Dobutsu, 42: 99–102Google Scholar
Jakob, E. M., Marshall, S. D. and Uetz, G. W. (1996) Estimating fitness: a comparison of body condition indices. Oikos, 77: 61–7CrossRefGoogle Scholar
Jallageas, M. and Assenmacher, I. (1986) Endocrine correlates of hibernation in the edible dormouse (Glis glis). In Living in the Cold (ed. H. C. Heller, X. J. Musaccia and L. C. H. Wang), pp. 265–72. Elsevier, New York
Jamison, R. L., Roinel, N. and Rouffignac, C. (1979) Urinary concentrating mechanism in the desert rodent Psammomys obesus. Am. J. Physiol., 236: F448–53Google ScholarPubMed
Jennings, D. H., Moore, M. C., Knapp, R., Matthews, L. and Orchinick, M. (2000) Plasma steroid-binding globulin mediation of differences in stress reactivity in alternate male phenotypes in tree lizards, Urosaurus ornatus. Gen. Comp. Endocrinol., 120: 289–99CrossRefGoogle Scholar
Jensen, E. V. (1991) Overview of the nuclear receptor family. In Nuclear Hormone Receptors (ed. E. V. Jensen), pp. 1–13. Academic Press, New York
Jolly, G. M. (1965) Explicit estimates for capture-recapture data with both death and dilution – stochastic model. Biometry, 52: 225–47CrossRefGoogle Scholar
Jones, M. E. E., Bradshaw, S. D., Fergusson, B. and Watts, R. (1990) The effect of available surface water on levels of anti-diuretic hormone (lysine vasopressin) and water and electrolyte metabolism of the Rottnest Island quokka (Setonix brachyurus). Gen. Comp. Endocrinol., 77: 75–87CrossRefGoogle Scholar
Jones, R. M. (1980) Metabolic consequences of accelerated urea synthesis during seasonal dormancy of spadefoot toads, Scaphiopus couchi and Scaphiopus multiplicatus. J. Exp. Zool., 212: 255–67CrossRefGoogle Scholar
Jones, C. M. and Geiser, F. (1992) Prolonged and daily torpor in the feathertail glider, Acrobates pygmaeus (Marsupialia: Acrobatidae). J. Zool., Lond., 227: 101–8CrossRefGoogle Scholar
Jørgensen, B. C. C. B. P. (1992) Effects of arginine vasotocin, cortisol and adrenergic factors on water balance in the toad Bufo bufo: physiology or pharmacology. Comp. Biochem. Physiol., 101A: 709–16CrossRefGoogle Scholar
Jouventin, P., Capdeville, D., Cuenot-Chaillet, F. and Boiteau, C. (1994) Exploitation of pelagic resources by a non-flying seabird: satellite tracking of the King penguin throughout the breeding cycle. Mar. Ecol. Prog. Ser., 106: 11–19CrossRefGoogle Scholar
Jouventin, P. and Weimerskirch, H. (1990) Satellite tracking of Wandering albatrosses. Nature (Lond.), 343: 746–8CrossRefGoogle Scholar
Kam, M. and Degen, A. A. (1988) Water, electrolyte and nitrogen balances of fat sand rats (Psammomys obesus) when consuming the saltbush Atriplex halimus. J. Zool., Lond., 215: 453–62CrossRefGoogle Scholar
Kayser, C. (1961) The Physiology of Natural Hibernation. Pergamon Press, Oxford and London. 323pp.
Keast, A. (1959) Australian birds: their zoogeography and adaptations to an arid environment. In Biogeography and Ecology in Australia (ed. A. Keast, R. L. Crocker and C. S. Christian), pp. 89–114. Junk, The Hague
Kenagy, G. J., Sharbaugh, S. M. and Nagy, K. A. (1989) Annual cycle of energy and time expenditure in a Golden-mantled ground squirrel population. Oecologia, 78: 269–82CrossRefGoogle Scholar
Kinnear, J. E., Bromilow, R. M., Onus, M. L. and Sokolowski, R. E. S. (1988) The Bromilow trap: a new risk-free soft trap suitable for small to medium-sized macropodids. Aust. Wildl. Res., 15: 235–7CrossRefGoogle Scholar
Klewen, R. and Winter, H. G. (1987) Contribution to the deep cooling marking of amphibians in the field. Salamandra, 23: 159–65Google Scholar
Koehn, R. K. and Bayne, B. L. (1989) Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc., 37: 157–71CrossRefGoogle Scholar
Kohel, K. A., MacKenzie, D. S., Rostal, D. C., Grumbles, J. S. and Lance, V. A. (2001) Seasonality in plasma thyroxine in the desert tortoise, Gopherus agassizii. Gen. Comp. Endocrinol., 121: 214–22CrossRefGoogle ScholarPubMed
Kooyman, G. L. (1998) The physiological basis of diving to depth: birds and mammals. A. Rev. Physiol., 60: 19–32CrossRefGoogle ScholarPubMed
Kooyman, G. L. and Campbell, W. B. (1972) Heart rates in freely diving Weddell seals. Comp. Biochem. Physiol., 43A: 31–6CrossRefGoogle Scholar
Kooyman, G. L., Castellini, M. A., Davis, R. W. and Maue, R. A. (1983) Aerobic dive limits of immature Weddell seals. J. Comp. Physiol. B, 151: 171–4CrossRefGoogle Scholar
Kooyman, G. L., Davis, R. W., Croxall, J. P. and Costa, D. P. (1982) Diving depths and energy requirements of king penguins. Science, 217: 726–7CrossRefGoogle ScholarPubMed
Kooyman, G. L. and Draber, C. M. (1968) Observations on milk, blood and urine constituents of the Weddell seal. Physiol. Zool., 41: 187–94CrossRefGoogle Scholar
Kooyman, G. L., Ponganis, P. J., Castellini, M. A., Ponganis, E. P., Ponganis, K. V., Thorson, P. H., Eckert, S. A. and LeMaho, Y. (1992) Heart rates and swim speeds of Emperor penguins diving under sea ice. J. Exp. Biol., 165: 161–80Google ScholarPubMed
Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W. and Sinnett, E. E. (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence for preferred pathways from blood chemistry and behaviour. J. Comp. Physiol. B, 138: 335–46CrossRefGoogle Scholar
Kotiaho, J. S. (1999) Estimating fitness: comparison of body condition indices revisited. Oikos, 87: 399–400CrossRefGoogle Scholar
Krebs, C. J. (1999) Ecological Methodology. Adddison-Wesley Educational Publishers, San Francisco, California
Krebs, C. J. (2001) Ecology: The Experimental Analysis of Distribution and Abundance. Addison-Wesley Educational Publishers, San Francisco, California. 695pp.
Krebs, C. J. and Singelton, G. R. (1993) Indices of condition for small mammals. Aust. J. Zool., 41: 317–23CrossRefGoogle Scholar
Krogh, A. (1939) Osmotic Regulation in Aquatic Animals. Cambridge University Press, Cambridge. 242pp.
Kuchling, G. (1999) The Reproductive Biology of the Chelonia. Springer-Verlag, Heidelberg. 223pp.
Kuchling, G., Burbidge, A. A., Bradshaw, S. D. and DeJose, J. (1988) News of Pseudemydura umbrina. IUCN Tortoise and Fresh-Water Turtle Specialist Group Newsletter, vol. 3, pp. 2–3Google Scholar
Kuchling, G., DeJose, J., Burbidge, A. A. and Bradshaw, S. D. (1992) Beyond captive breeding: the Western Swamp Tortoise, Pseudemydura umbrina, recovery programme. Int. Zool. Ybk, 31: 37–41CrossRefGoogle Scholar
Kuhn, T. S. (1962) The Structure of Scientific Revolutions. The University of Chicago Press, Chicago. 210pp.
Kuhn, T. S. (1976) The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Havard University Press, Cambridge, Massachusetts. 297pp.
Lacas, S., Allevard, A. M., Ag'Atteinine, S., Gallo-Bona, N., Gauquelin-Koch, G., Hardin-Pouzet, H., Gharib, C., Sicard, B. and Maurel, D. (2000) Cardiac Natriuretic Peptide respones to water restriction in the hormonal adaptation of two semidesert rodents from West Africa (Steatomys caurinus, Taterillus gracilis). Gen. Comp. Endocrinol., 120: 176–89CrossRefGoogle Scholar
Lachiver, F. (1964) Thyroid activity in the Garden dormouse (Eliomys quercinus L.) studied from June to November. Ann. Acad. Sci. Fenn., 71: 285–94Google Scholar
Lachiver, F., Cheniti, T., Bradshaw, S. D., Berthier, J. L. and Petter, F. (1978) Field studies in southern Tunisia on water turnover and thyroid activity in two species of Meriones. In Environmental Endocrinology (ed. I. Assenmacher and D. S. Farner), pp. 81–4. Springer-Verlag, Berlin
Lasley, B. L. and Kirkpatrick, J. F. (1991) Monitoring ovarian function in captive and free-ranging wildlife by means of urinary and faecal steroids. J. Zoo Wildl., 22: 23–31Google Scholar
Laurance, W. F. (1992) Abundance estimates of small mammals in Australian tropical rainforest: a comparison of four trapping methods. Wildl. Res., 19: 651–5CrossRefGoogle Scholar
Boef, B. J., Naito, Y., Huntley, A. C. and Asaga, T. (1989) Prolonged, continuous, deep diving by Northern elephant seals. Cana. J. Zool., 67: 2514–19CrossRefGoogle Scholar
Le Maho, Y. (1976) Thermorégulation et jeûne chez le Manchot Empereur et le Manchot Royal. Thèse de Doctorat, Laboratoire de Thermorégulation du CNRS, Université Claude-Bernard, Lyon. 109pp.
Maho, Y. (1984) Adaptations métaboliques au jeûne prolongé chez les oiseaux et les mammifères. Bull. Soc. Ecophysiol. (Paris), 9: 129–48Google Scholar
Maho, Y., Delclitte, P. and Chatonnet, J. (1976) Thermoregulation in fasting Emperor penguins under natural conditions. Am. J. Physiol., 231: 913–22Google ScholarPubMed
Lee, A. K. (1968) Water economy of the burrowing frog, Heleioporus eyrei (Gray). Copeia, 1968: 741–5CrossRefGoogle Scholar
Lee, A. K., Bradley, A. J. and Braithwaite, R. W. (1977a) Life history and male mortality in Antechinus stuartii. In The Biology of Marsupials (ed. D. Gilmore and B. Stonehouse), pp. 209–20. Cambridge University Press, Cambridge
Lee, A. K., Bradley, A. J. and Braithwaite, R. W. (1977) Corticosteroid levels and male mortality in Antechinus stuartii. In The Biology of Marsupials (ed. B. Stonehouse and B. Gilmour), pp. 209–20. Macmillan, London
Lee, A. K. and Cockburn, A. (1985) Evolutionary Ecology of Marsupials. Cambridge University Press, Cambridge. 274pp.
Lee, A. K. and Mercer, E. H. (1967) Cocoon surrounding desert-dwelling frogs. Sciences, N. Y., 157: 87–8CrossRefGoogle ScholarPubMed
Lee, A. K. and McDonald, I. R. (1985) Stress and population regulation in small mammals. Oxford Rev. Reprod. Biol., pp. 261–304. Oxford University Press. Oxford
Lee, A. K., Woolley, P. and Braithwaite, R. W. (1982) Life history strategies of dasyurid marsupials. In Carnivorous Marsupials (ed. M. Archer), pp. 1–11. Royal Zoological Society of New South Wales, Sydney, Australia
Lee, J. C. (1980) Comparative thermal ecology of two lizards. Oecologia, 44: 171–6CrossRefGoogle ScholarPubMed
Lee, P. and Schmidt-Nelsen, K. (1971) Respiratory and cutaneous evaporation in the Zebra finch: effect on water balance. Am. J. Physiol., 220: 1598–605Google ScholarPubMed
Leslie, P. H. (1952) The estimation of population parameters from data obtained by means of the capture-recapture method. Biometry, 39: 363–88Google Scholar
Levitt, J. (1980) Responses of Plants to Environmental Stress. Academic Press, New York
Licht, P. (1964) A comparative study of the thermal dependence of contractility in saurian skeletal muscle. Comp. Biochem. Physiol., 13: 27–34CrossRefGoogle ScholarPubMed
Licht, P., Denver, R. J. and Herrera, B. E. (1991) Comparative survey of blood thyroxine binding proteins in turtles. J. Exp. Zool., 259: 43–52CrossRefGoogle ScholarPubMed
Lifson, N., Gordon, G. B. and McClintock, R. (1955) Measurement of total carbon dioxide production by means of D218O. J. Appl. Physiol., 7: 704–10CrossRefGoogle Scholar
Lifson, N. and McClintock, R. (1966) Theory of use of the turnover rates of body water for measuring energy and material balance. J. Theor. Biol., 12: 46–74CrossRefGoogle ScholarPubMed
Lincoln, F. C. (1930) Calculating waterfowl abundance on the basis of banding returns. U.S.D.A. Circular, 118: 1–4Google Scholar
Lockyer, C. (1997) Diving behaviour of the Sperm whale in relation to feeding. In Sperm Whale Deaths in the North Sea (ed. T. G. Jacques and R. H. Lambertson) (Bull. Inst. R. Sci. Nat. Belg. Biol., 67), pp. 47–52
Louw, G. N. and Seely, M. K. (1982) Ecology of Desert Organisms. Longman, London and New York. 194pp.
Lovegrove, B. G. (2000) Daily heterothermy in mammals: coping with unpredictable environments. In Life in the Cold: Eleventh International Hibernation Symposium (ed. G. Heldmaier and M. Klingenspor), pp. 29–40. Springer-Verlag, Berlin
Lovegrove, B. G., Raman, J. and Perrin, M. R. (2001) Daily torpor in elephant shrews (Macroscelidae: Elephantulus spp.) in response to food deprivation. J. Comp. Physiol. B, 171: 11–21CrossRefGoogle Scholar
Low, B. S. (1978) Environmental uncertainty and the parental strategies of marsupials and placentals. Am. Nat., 112: 197–213CrossRefGoogle Scholar
Lyman, C. P. (1978) Natural torpidity, problems and perspectives. In Strategies in Cold: Natural Torpidity and Thermogenesis (ed. L. C. H. Wang and J. W. Hudson), pp. 9–19. Academic Press, New York
Macfarlane, W. V., Kinne, R., Walmsley, C. M., Siebert, B. D. and Peter, D. (1967) Vasopressins and the increase of water and electrolyte excretion by sheep, cattle and camels. Nature (Lond.), 214: 979–81CrossRefGoogle ScholarPubMed
Macfarlane, W. V., Morris, R. J. H. and Howard, B. (1962) Water metabolism of merino sheep and camels. Aust. J. Sci., 25: 112–16Google Scholar
Macfarlane, W. V., Morris, R. J. H. and Howard, B. (1963) Turnover and distribution of water in desert camels, sheep, cattle and kangaroos. Nature (Lond.), 197: 270–1CrossRefGoogle Scholar
Maclean, G. L. (1996) The Ecophysiology of Desert Birds. Springer, Berlin, New York. ⅺ + 181pp.
MacLean, G. S., Lee, A. K. and Wilson, K. J. (1973) A simple method of obtaining blood from lizards. Copeia, 1973: 338–9CrossRefGoogle Scholar
MacMillen, R. E. and Lee, A. K. (1967) Australian desert mice: independence of exogenous water. Sciences, N.Y., 158: 383–5CrossRefGoogle ScholarPubMed
Maddison, W. P. (1991) Squared-change parsimony reconstructions of ancestral states for continuous valued characters in a phylogenetic tree. Syst. Zool., 40: 304–14CrossRefGoogle Scholar
Maetz, J. (1971) Fish gills: mechanisms of salt transfer in fresh water and sea water. Phil. Trans. R. Soc. Lond. B, 262: 209–49CrossRefGoogle Scholar
Magnusson, W. E. (1989) Ratios, statistics, and physiological models: comment on Packard and Boardman. Physiol. Zool., 62: 997–1000CrossRefGoogle Scholar
Main, A. R. (1961) The occurrence of Macropodidae on islands and its climatic and ecological implications. J. R. Soc. W. A., 44: 84–9Google Scholar
Main, A. R. and Bakker, H. R. (1981) Adaptation of macropod marsupials to aridity. In Ecological Biogeography of Australia (ed. A. Keast), pp. 1490–519. Dr. W. Junk, The Hague
Malan, A. (1993) Temperature regulation, enzyme kinetics, and metabolic depression in mammalian hibernation. In Life in the Cold: Ecological, Physiological and Molecular Mechanisms (ed. H. V. Carey), pp. 241–51. Westview Press, Boulder, Colorado
Malan, A. (1996) The origins of hibernation: a reappraisal. In Adaptations to the Cold (ed. F. Geiser, A. J. Hulbert and S. C. Nicol), pp. 1–6. University of New England Press, Armidale, NSW
Malvin, R. L., Bonjour, J. P. and Ridgway, S. (1971) Antidiuretic hormone levels in some cetaceans. Proc. Soc. Exp. Biol. Med., 136: 1203–5CrossRefGoogle ScholarPubMed
Malvin, R. L., Ridgway, S. and Cornell, L. H. (1978) Renin and aldosterone levels in dolphins and sea lions. Proc. Soc. Exp. Biol. Med., 157: 665–8CrossRefGoogle ScholarPubMed
Manley, B. J. F. and Parr, M. J. (1968) A new method of estimating population size, survivorship and birth rate from capture-recapture data. Trans. Soc. Brit. Ent., 18: 81–9Google Scholar
Marder, J. and Gavrieli-Levin, I. (1987) The heat-acclimated pigeon: an ideal physiological model for a desert bird. J. Appl. Physiol., 62: 952–8CrossRefGoogle ScholarPubMed
Marder, J., Withers, P. C. and Philpot, G. (2003) Patterns of cutaneous water evaporation in Australian pigeons. Isr. J. Zool., (in press)CrossRefGoogle Scholar
Martin, A. R., Smith, T. G. and Cox, O. P. (1993) Studying the behaviour and movements of high Arctic belugas with satellite telemetry. In Marine Mammals: Advances in Behavioural and Population Biology (ed. I. L. Boyd), pp. 195–210. Clarendon Press, Oxford, UK
Martins, E. P., Diniz-Filho, J. A. F. and Housworth, E. A. (2002) Adapative constraints and the phylogenetic comparative method: a computer simulation test. Evolution, 56: 1–13CrossRefGoogle Scholar
Mason, J. W. (1975) A historical view of the stress field. J. Hum. Stress., 1: 6–12CrossRefGoogle ScholarPubMed
McCarron, H. C. K., Buffenstein, R., Fanning, F. D. and Dawson, T. (2001) Free-ranging heart rate, body temperature and energy metabolism in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus) in the arid regions of South East Australia. J. Comp. Physiol. B, 171: 401–11Google ScholarPubMed
McClanahan, L. L. (1964) Osmotic tolerance of the muscles of two desert inhabiting toads, Bufo cognatus and Scaphiopus couchii. Cell Physiol. Biochem., 12: 501Google Scholar
McClanahan, L. L. (1967) Adaptations of the spadefoot toad, Scaphiopus couchii, to desert environments. Comp. Biochem. Physiol., 20: 73–99CrossRefGoogle Scholar
McClanahan, L. L. (1972) Changes in body fluids of burrowed spadefoot toads as a function of soil water potential. Copeia, 1972: 209–16CrossRefGoogle Scholar
McClanahan, L. L. and Baldwin, R. (1969) Rate of water uptake through the integument of the desert toad, Bufo punctatus. Cell Physiol. Biochem., 28: 381–9Google ScholarPubMed
McClanahan, L. L., Shoemaker, V. H. and Ruibal, R. (1976) Structure and function of the cocoon of a ceratophryd frog. Copeia, 1976: 179–85CrossRefGoogle Scholar
McConnell, B. J., Chambers, C. and Fedak, M. A. (1992) Foraging ecology of southern Elephant seals in relation to bathymetry and productivity of the Southern Ocean. Antarctic Sci., 4: 393–8CrossRefGoogle Scholar
McConnell, B. J. and Fedak, M. A. (1996) Movements of southern Elephant seals. Can. J. Zool., 74: 1485–96CrossRefGoogle Scholar
McDonald, I. R., Lee, A. K., Than, K. A. and Martin, R. W. (1986) Failure of glucocorticoid feedback in males of a population of small marsupials (Antechinus swaisonii) during the period of mating. J. Endocrinol., 108: 63–8CrossRefGoogle Scholar
McDonald, I. R. and Bradshaw, S. D. (1993) Adrenalectomy and steroid replacement in a small macropodid marsupial, the quokka (Setonix brachyurus): metabolic and renal effects. Gen. Comp. Endocrinol., 90: 64–77CrossRefGoogle Scholar
McDonald, L., Bradshaw, S. D. and Gardner, A. (2003) Legal protection of fauna habitat in Western Australia. Environmental and Planning Law Journal. (submitted)Google Scholar
McEwen, B. S. (1998a) Protecting and damaging effects of stress mediators. New Engl. J. Med., 338: 171–9CrossRefGoogle Scholar
McEwen, B. S. (1998b) Stress, adaptation, and disease: allostasis and allostatic load. Ann. N. Y. Acad. Sci., 840: 33–44CrossRefGoogle Scholar
McGinnis, S. M. and Dickson, L. L. (1967) Thermoregulation in the desert iguana Dipsosaurus dorsalis. Sciences, N.Y., 156: 1757–9CrossRefGoogle ScholarPubMed
McGinnis, S. M. and Falkenstein, M. (1971) Thermoregulatory behavior in three sympatric species of iguanid lizards. Copeia, 1971: 552–4CrossRefGoogle Scholar
Medica, P. A., Bury, R. B. and Luckenbach, R. (1980) Drinking and construction of water catchments by the desert tortoise Gopherus agassizii, in the Mojave desert. Herpetologica, 36: 301–4Google Scholar
Miller, T. and Bradshaw, S. D. (1979) Adrenocortical function in a field population of a macropodid marsupial (Setonix brachyurus, Quoy & Gaimard). J. Endocrinol., 82: 159–70CrossRefGoogle Scholar
Mills, H. and Bencini, R. (2000) New evidence for facultative male die-off in island populations of dibblers, Parantechinus apicalis. Aust. J. Zool., 48: 501–10CrossRefGoogle Scholar
Minnich, J. E. (1977) Adaptive responses in the water and electrolyte budgets of native and captive desert tortorises, Gopherus agassizi, to chronic drought. Desert Tortoise Council Symp. Proc., 1977, pp. 102–29Google Scholar
Minnich, J. E. and Ziegler, M. R. (1976) Comparison of field water budgets in the tortoises Gopherus agassizzii and Gopherus polyphemus. Am. Zool., 16: 219Google Scholar
Moberly, W. R. (1968) The metabolic responses of the common iguana, Iguana iguana to activity and restraint. Comp. Biochem. Physiol., 27: 1–20CrossRefGoogle Scholar
Monod, T. (1973) Les Déserts. Editions Horizons de France, Paris. 247pp.
Moraf{}ka, D. J. (1994) Neonates: missing links in the life history of North American tortoises. In Biology of North American Tortoises (ed. R. B. Bury and D. J. Germano), pp. 161–73. National Biological Survey: Fisheries and Wildlife Research, no. 13. Washington, DC.
Moreno, J. and Sanz, J. J. (1996) Field metabolic rates of breeding Chinstrap penguins (Pygoscelis antarctica) in the South Shetlands. Physiol. Zool., 69: 586–98CrossRefGoogle Scholar
Moro, D. (2000) Kidney structure in two species of arid zone rodent: Lakeland Downs Short-Tailed mouse, Leggadina lakedownensis, and the House mouse, Mus domesticus. Aust. Mammal., 21: 251–5Google Scholar
Moro, D. and Bradshaw, S. D. (1999) Comparative water and sodium balance, and metabolic physiology, of House mice and Short-tailed mice under laboratory conditions. J. Comp. Physiol. B, 169: 538–48CrossRefGoogle Scholar
Moro, D. and Morris, K. D. (2000) Movements and refugia of Lakeland Downs short-tailed mice, Leggadina lakedownensis, and house mice, Mus domesticus, on Thevanard Island, Western Australia. Wildl. Res., 27: 11–20CrossRefGoogle Scholar
Morton, S. R. and MacMillen, R. E. (1982) Seeds as sources of preformed water for desert-dwelling granivores. J. Arid Envts, 8: 235–43Google Scholar
Motais, R. (1967) Les mécanismes d'échanges d'ioniques branchiaux chez les teleostéens. Ann. Inst. Oceanogr. Monaco, 45: 1083Google Scholar
Muchlinski, A. E., Hogan, J. M. and Stoutenburgh, R. J. (1990) Body temperature regulation in a desert lizard, Sauromalus obesus, under undisturbed field conditions. Comp. Biochem. Physiol., 95A: 579–83CrossRefGoogle Scholar
Muchlinski, A. E., Stoutenburgh, R. J. and Hogan, J. M. (1989) Fever response in laboratory maintained and free-ranging chuckwallas (Sauromalus obesus). Am. J. Physiol., 257: R150–5Google Scholar
Mullen, R. K. (1970) Respiratory metabolism and body water turnover rates of Perognathus formosus in its natural environment. Comp. Biochem. Physiol., 32: 259–65CrossRefGoogle ScholarPubMed
Mullen, R. K. (1971) Energy metabolism and body water turnover rates of two species of free-living kangaroo rats, Dipodomys merriami and Dipodomys microps. Comp. Biochem. Physiol., 39A: 379–90CrossRefGoogle Scholar
Munck, A. U., Guyre, P. M. and Holbrook, N. J. (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev., 5: 25–44CrossRefGoogle ScholarPubMed
Murphy, R. C. (1936) Oceanic Birds of South America. Macmillan, New York
Murton, R. K. and Westwood, N. J. (1977) Avian Breeding Cycles. Clarendon Press, Oxford, UK.
Myers, R. D., Veale, W., L. and Yaksh, T. L. (1971) Change in body temperature of the unanaesthetized monkey produced by sodium and calcium ions perfused through the cerebral ventricles. J. Physiol. (Lond.), 217: 381–92CrossRefGoogle Scholar
Nagy, K. A. (1972) Water and electrolyte budgets of a free-living desert lizard, Sauromalus obesus. J. Comp. Physiol. B., 79: 39–62CrossRefGoogle Scholar
Nagy, K. A. (1973) Behavior, diet and reproduction in a desert lizard, Sauromalus obesus. Copeia, 1973: 93–102CrossRefGoogle Scholar
Nagy, K. A. (1980) CO2 production in animals: analysis of potential errors in the doubly labeled water method. Am. J. Physiol., 238: R466–73Google ScholarPubMed
Nagy, K. A. (1982a) Field studies of water relations. In Biology of the Reptilia (ed. C. Gans and H. Pough), pp. 483–501. Academic Press, New York
Nagy, K. A. (1982b) Energy requirements of free-living iguanid lizards. In Iguanas of the World: Their Behavior, Ecology, and Conservation (ed. G. M. Burghardt and A. S. Rand), pp. 45–59. Noyes Publications, Park Ridge, New Jersey
Nagy, K. A. (1983) The Doubly Labeled Water Method: A Guide to its Use. (Misc. Pub. Univ. Calif.) University of California Press. 45pp.
Nagy, K. A. (1987a) How do desert animals get enough water? In Progress in Desert Research (ed. L. Berkofsky and M. G. Wurtele), pp. 89–98. Rowman & Littlefield, Totowa, New Jersey
Nagy, K. A. (1987b) Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr., 57: 111–28CrossRefGoogle Scholar
Nagy, K. A. (1988a) Seasonal patterns of water and energy balance in desert vertebrates. J. Arid Envts, 14: 201–10Google Scholar
Nagy, K. A. (1988b) Energetics of desert reptiles. In Ecophysiology of Desert Vertebrates (ed. P. K. Gosh and I. Prakash), pp. 166–86. Scientific Publishers, Jodhpur, India
Nagy, K. A. (1992) The doubly labeled water method in ecological energetics studies of terrestrial vertebrates. Bull. Soc. Ecophysiol. (Paris), Suppl. 17: 9–14Google Scholar
Nagy, K. A. (1994a) Seasonal water, energy and food use by free-living, arid-habitat mammals. Aust. J. Zool., 42: 55–63CrossRefGoogle Scholar
Nagy, K. A. (1994b) Field bioenergetics of mammals: what determines field metabolic rates?Aust. J. Zool., 42: 43–53CrossRefGoogle Scholar
Nagy, K. A. (2000) Energy costs of growth in neonate reptiles. Herpet. Monogr., 14: 378–87CrossRefGoogle Scholar
Nagy, K. A. (2001) Food requirements of wild animals: predictive equations for free-living mammals, reptiles and birds. Nutr. Abstr. Rev., B71: 21R–31RGoogle Scholar
Nagy, K. A. and Bradshaw, S. D. (1995) Energetics, osmoregulation and food consumption by free-living desert lizards, Ctenophorus (=Amphibolurus) nuchalis. Amphib. Rept., 16: 25–35CrossRefGoogle Scholar
Nagy, K. A. and Bradshaw, S. D. (2000) Scaling of energy and water fluxes in free-living arid-zone Australian marsupials. J. Mammal., 81: 962–702.0.CO;2>CrossRefGoogle Scholar
Nagy, K. A., Clarke, B. C., Seely, M. K., Mitchell, D. and Lighton, J. R. B. (1991) Water and energy balance in Namibian desert sand-dune lizards Anglosaurus skoogi (Anderson, 1916). Funct. Ecol., 5: 731–9CrossRefGoogle Scholar
Nagy, K. A. and Costa, D. P. (1980) Water flux in animals: analysis of potential errors in the tritiated water method. Am. J. Physiol., 238: R454–65Google ScholarPubMed
Nagy, K. A., Girard, I. A. and Brown, T. K. (1999) Energetics of free-ranging mammals, reptiles, and birds. A. Rev. Nutrit., 19: 247–77CrossRefGoogle ScholarPubMed
Nagy, K. A. and Gruchacz, M. J. (1994) Seasonal water and energy metabolism of the desert-dwelling kangaroo rat (Dipodomys merriami). Physiol. Zool., 67: 1461–78CrossRefGoogle Scholar
Nagy, K. A., Kooyman, G. L. and Ponganis, P. J. (2001) Energetic cost of foraging in free-diving Emperor penguins. Physiol. Biochem. Zool., 74: 541–7CrossRefGoogle ScholarPubMed
Nagy, K. A., Lee, A. K., Martin, R. W. and Fleming, M. R. (1988) Field metabolic rate and food requirement of a small dasyurid marsupial, Sminthopsis crassicaudata. Aust. J. Zool., 36: 293–9CrossRefGoogle Scholar
Nagy, K. A. and Medica, P. A. (1986) Physiological ecology of desert tortoises in southern Nevada. Herpetologica, 42: 73–92Google Scholar
Nagy, K. A., Meienberger, C., Bradshaw, S. D. and Wooller, R. D. (1995) Field metabolic rate of a small marsupial mammal, the Honey Possum (Tarsipes rostratus). J. Mammal., 76: 862–6CrossRefGoogle Scholar
Nagy, K. A., Morafka, D. J. and Yates, R. A. (1997) Young desert tortoise survival: energy, water, and food requirements in the field. Chelon. Cons. Biol., 2: 396–404Google Scholar
Nagy, K. A. and Obst, B. S. (1992) Food and energy requirements of Adélie penguins (Pygoscelis adelie) on the Antarctic peninsula. Physiol. Zool., 65: 1271–84CrossRefGoogle Scholar
Nagy, K. A. and Peterson, C. C. (1988) Scaling of water flux rate in animals. Univ. Calif. Publ. Zool., 120: 1–172Google Scholar
Nagy, K. A., Seymour, R. S., Lee, A. K. and Braithwaite, R. (1978) Energy and water budgets in free-living Antechinus stuartii (Marsupialia: Dasyuridae). J. Mammal., 59: 60–8CrossRefGoogle Scholar
Nagy, K. A., Shoemaker, V. H. and Costa, W. R. (1976) Water, electrolyte and nitrogen budgets of jackrabbits (Lepus californicus) in the Mojave Desert. Physiol. Zool., 49: 351–63CrossRefGoogle Scholar
Nagy, K. A., Siegfried, W. R. and Wilson, R. P. (1984) Energy utilisation by free-ranging Jackass penguins, Spheniscus demersus. Ecology, 65: 1648–55CrossRefGoogle Scholar
Nelson, R. A. (1980) Protein and fat metabolism in hibernating bears. Fed. Proc., 123: 892–4Google Scholar
Newsome, A. E. (1975) An ecological comparison of the two arid-zone kangaroos of Australia, and their prosperity since the introduction of ruminant stock to their environment. Quart. Rev. Biol., 50: 389–424Google ScholarPubMed
Nicholls, D. G., Murray, M. D., Butcher, E. and Moore, P. (1997) Weather systems determine the non-breeding distribution of Wandering albatrosses over Southern Oceans. Emu, 97: 240–4Google Scholar
Nicol, S. C. and Andersen, N. A. (2000) Patterns of hibernation of echidnas in Tasmania. In Life in the Cold: Eleventh International Hibernation Symposium (ed. G. Heldmaier and M. Klingenspor), pp. 21–8. Springer-Verlag, Berlin
Nicol, S. C. and Anderson, N. A. (1996) Hibernation in the echidna: not an adaptation to cold? In Adaptations to the Cold (ed. F. Geiser, A. J. Hulbert and S. C. Nicol), pp. 7–12. University of New England Press, Armidale, NSW.
Obst, B. S., Nagy, K. A. and Ricklefs, R. E. (1987) Energy utilization by Wilson's Storm-petrel (Oceanites oceanicus). Physiol. Zool., 60: 200–10CrossRefGoogle Scholar
Oksche, A., Farner, D. S., Serventy, D. L., Wolff, F. and Nicholls, C. A. (1963) The hypothalamo-hypophysial neurosecretory system of the zebra finch, Taeniopygia castanotis. Z. Zellforsch., 58: 846–914CrossRefGoogle ScholarPubMed
O'Reilly, K. M. and Wingfield, J. C. (2001) Ecological factors underlying adrenocortical response to capture stress in Arctic-breeding shorebirds. Gen. Comp. Endocrinol., 124: 1–11CrossRefGoogle ScholarPubMed
Ortiz, R. M., Adams, S. H., Costa, D. P. and Ortiz, C. L. (1996) Plasma vasopressin levels and water conservation in fasting, postweaned Northern elephant seal pups (Mirounga angustirostris). Mar. Mamm. Sci., 12: 99–106CrossRefGoogle Scholar
Ortiz, R. M., Worthy, G. A. J. and Mackenzie, D. S. (1998) Osmoregulation in wild and captive West Indian manatees (Trichechus manatus). Physiol. Zool., 71: 449–57CrossRefGoogle Scholar
Packard, G. C. and Boardman, T. J. (1987) The misuse of ratios to scale physiological data that vary allometrically with body size. In New Directions in Ecological Physiology (ed. M. E. Feder, A. F. Bennett, W. W. Burggren and R. B. Huey), pp. 216–39. Cambridge University Press, Cambridge, New York
Packard, G. C. and Boardman, T. J. (1988) The misuse of ratios, indices, and percentages in ecophysiological research. Physiol. Zool., 61: 1–9CrossRefGoogle Scholar
Packer, W. C. (1963) Dehydration, hydration, and burrowing behavior in Heleioporus eyrei (Gray). Ecology, 44: 643–51CrossRefGoogle Scholar
Palmer, A. R. and Stobexk, C. (1986) Fluctuating asymmetry: measurement, analysis, patterns. A. Rev. Ecol. Syst., 17: 391–421CrossRefGoogle Scholar
Parmenter, C. A., Yates, T. L., Parmenter, R. R., Mills, J. N., Childs, J. E., Campbell, M. L., Dunnum, J. L. and Milner, J. (1998) Small mammal survival and trapability in mark-recapture monitoring programs for hantavirus. J. Wildl. Dis., 34: 1–12CrossRefGoogle ScholarPubMed
Parsons, P. A. (1990) Fluctuating asymmetry: an epigenetic measure of stress. Biol. Rev., 65: 131–45CrossRefGoogle ScholarPubMed
Peaker, M. (1971) Avian salt glands. Phil. Trans. R. Soc. Lond. B, 262: 289–300CrossRefGoogle Scholar
Peaker, M. and Linzell, L. J. (1975) Salt Glands in Birds and Reptiles. Cambridge University Press, Cambridge. 307pp.
Pearce, A. F. (1991) Eastern boundary currents of the southern hemisphere. J. R. Soc. W. A., 74: 35–45Google Scholar
Pearce, A. F. and Walker, D. I. (1991) The Leeuwin current: an influence on the coastal climate and marine life of Western Australia. J. Roy. Soc. W. A., 74: 1–140Google Scholar
Pennycuik, C. J. (1982) The flight of petrels and albatrosses (Procellariiformes) observed in South Georgia and its vicinity. Proc. R. Soc. Lond. B, 300: 75–106Google Scholar
Peters, E. L. (1996) Estimating energy metabolism of goldfish (Carassius auratus) and southern toads (Bufo terrestris) from 86Rb elimination rates. Copeia, 4: 791–804CrossRefGoogle Scholar
Peters, E. L., Shawki, A. I., Tracy, C. R., Whicker, F. W. and Nagy, K. A. (1995) Estimation of the metabolic rate of the desert iguana (Dipsosuarus dorsalis) by a radionuclide technique. Physiol. Zool., 68: 316–41CrossRefGoogle Scholar
Peters, R. H. (1983) The Ecological Implications of Body Size. Cambridge University Press, Cambridge. 329pp.
Peterson, C. C. (1995) Anhomeostasis: water and solute relations in two populations of the desert tortoise (Gopherus agassizii) during chronic drought. Physiol. Zool., 69: 1324–58CrossRefGoogle Scholar
Peterson, M. E., Krieger, D. T., Drucker, W. D. and Halmi, N. S. (1982) Immunocytochemical study of the hypophysis in 25 dogs with pituitary-dependent hyperadrenocorticism. Acta Endocrinol. (Copenh.), 101: 15–24Google ScholarPubMed
Petter, F., Lachiver, F. and Chekir, R. (1984) Les adaptations des rongeurs Gerbilidés à la vie dans les régions arides. Bull. Soc. Bot. Fr., 131: 365–73Google Scholar
Pettit, T. N., Nagy, K. A., Ellis, H. I. and Whittow, G. C. (1988) Incubation energetics of the Laysan albatross. Oecologia, 74: 546–50CrossRefGoogle ScholarPubMed
Pietruszka, R. D. (1987) Maxithermy and the thermal biology of an herbivorous sand dune lizard. J. Arid Envts, 14: 175–85Google Scholar
Pinshow, B., Fedak, M. A., Battles, D. R. and Schmidt-Nielsen, K. (1976) Energy expenditure for thermoregulation and locomotion in Emperor penguins. Am. J. Physiol., 231: 903–12Google ScholarPubMed
Ponganis, E. P. and Kooyman, G. L. (2000) The diving physiology of birds: a history of studies on polar species. Comp. Biochem. Physiol., 126A: 143–51CrossRefGoogle Scholar
Ponganis, E. P., Kooyman, G. L. and Castellini, M. A. (1993) Determinants of the aerobic dive limit of Weddell seals: analysis of diving metabolic rates, post-dive end tidal PO2s, and blood and muscle oxygen stores. Physiol. Zool., 66: 732–49CrossRefGoogle Scholar
Ponganis, E. P., Kooyman, G. L., Starke, L. N., Kooyman, C. A. and Kooyman, T. G. (1997) Post-dive blood lactate concentrations in Emperor penguins, Aptenodytes forsteri. J. Exp. Biol., 200: 1623–6Google ScholarPubMed
Ponganis, P. J., Kooyman, G. L., Dam, R. and LeMaho, Y. (1999) Physiological responses of king penguins during simulated diving to 136 m depth. J. Exp. Biol., 202: 2819–22Google ScholarPubMed
Popovic, V. (1960) Endocrines in hibernation. Bull. Mus. Comp. Zool., 124: 105–30Google Scholar
Poppitt, S. D., Speakman, J. R. and Racey, P. A. (1993) The energetics of reproduction in the common shrew, Sorex araneus. Physiol. Zool., 66: 964–82CrossRefGoogle Scholar
Pough, F. H. (1980) The advantages of ectothermy for tetrapopds. Am. Nat., 115: 92–112CrossRefGoogle Scholar
Pough, F. H. (1983) Amphibians and reptiles as low-energy systems. In Behavioral Energetics: the Cost of Survival in Vertebrates (ed. W. P. Aspey and S. I. Lustick), pp. 141–88. Academic Press, New York
Pravosudov, V. V., Kitaysky, A. S., Wingfield, J. and Clayton, N. S. (2001) Long-term unpredictable foraging conditions and physiological stress response in Mountain Chickadees (Poecile gambeli). Gen. Comp. Endocrinol., 123: 324–31CrossRefGoogle Scholar
Prévost, J. (1961) Écologie du Manchot Empereur. Hermann, Paris. 294pp.
Prévost, J. and Vilter, V. (1963) Histologie de la sécretion oesophagienne du Manchot empereur. Proc. 13th Intern. Ornithol. Congr., Ithaca. pp. 1085–94Google Scholar
Purohit, K. G. (1974) Observations on size and relative medullary thickness in kidneys of some Australian mammals and their ecophysiological appraisal. Z. Angew. Zool., 4: 495–505Google Scholar
Rankin, C. J. and Davenport, J. A. (1981) Animal Osmoregulation. Blackie, Glasgow, London. 202pp.
Rautenstrauch, K. R., Rager, A. L. H. and Rekestraw, D. L. (1998) Winter behavior of desert tortoises in southcentral Nevada. J. Wildl. Man., 62: 98–104CrossRefGoogle Scholar
Reed, J. Z., Butler, P. J. and Fedak, M. A. (1994) The metabolic characteristics of the locomotory muscles of grey seals (Halichoerus grypus), harbour seals (Phoca vitulina) and Antarctic fur seals (Arctocephalus gazella). J. Exp. Biol., 194: 33–46Google Scholar
Reed, J. Z., Chambers, C., Fedak, M. A. and Butler, P. J. (1994) Gas exchange of captive freely diving grey seals (Halichoerus grypus). J. Exp. Biol., 191: 1–18Google Scholar
Reed, J. Z., Chambers, C., Hunter, C. J., Lockyer, C., Kastelein, R., Fedak, M. A. and Boutilier, R. G. (2000) Gas exchange and heart rate in the harbour porpoise, Phocoena phocoena. J. Comp. Physiol. B, 170: 1–10CrossRefGoogle ScholarPubMed
Reese, J. B. and Haines, H. (1978) Effects of dehydration on metabolic rate and fluid distribution in the Jackrabbit, Lepus californicus. Physiol. Zool., 51: 155–65CrossRefGoogle Scholar
Reid, I. R. and McDonald, I. R. (1967) Renal function in the marsupial Trichosurus vulpecula. Comp. Biochem. Physiol., 25: 1071–9CrossRefGoogle Scholar
Reilly, J. J. and Fedak, M. (1991) Rates of water turnover and energy expenditure of free-living male common seals (Phoca vitulina). J. Zool., Lond., 223: 461–8CrossRefGoogle Scholar
Reidesel, M. L. (1960) The internal environment during hibernation. Bull. Mus. Comp. Zool., 124: 421–35Google Scholar
Reist, J. D. (1985) An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can. J. Zool., 230: 513–28Google Scholar
Reiter, R. J. (1978) The Pineal and Reproduction. S. Karger, Basel. 223pp.
Reiter, R. J. and Follett, B. K. (1980) Seasonal Reproduction in Higher Vertebrates. S. Karger, Basel
Rice, G. E. and Bradshaw, S. D. (1980) Changes in dermal reflectance and vascularity and their effects on thermoregulation in Amphibolurus nuchalis (Reptilia: Agamidae). J. Comp. Physiol. B, 135: 139–46CrossRefGoogle Scholar
Richmond, C. R., Trujillo, T. T. and Martin, D. W. (1960) Volume and turnover of body water in Dipodomys deserti with tritiated water. Proc. Soc. Exp. Biol. Med., 104: 9–11CrossRefGoogle Scholar
Ridgway, S. H., Bowers, C. A., Miller, D., Schultz, M. L., Jacobs, C. A. and Dooley, C. A. (1984) Diving and blood oxygen in the White whale. Can. J. Zool., 62: 2349–51CrossRefGoogle Scholar
Rismiller, P. D. and Heldmaier, G. (1988) How photoperiod influences body temperature in Lacerta viridis. Oecologia, 75: 125–31CrossRefGoogle ScholarPubMed
Rismiller, P. D. and Heldmaier, G. (1991) Seasonal changes in daily metabolic patterns of Lacerta viridis. J. Comp. Physiol., 161: 482–8CrossRefGoogle Scholar
Rismiller, P. D. and McKelvey, M. W. (2000) Spontaneous arousal in reptiles? Body temperature ecology of Rosenberg's goanna, Varanus rosenbergi. In Life in the Cold: Eleventh International Hibernation Symposium (ed. G. Heldmaier and M. Klingenspor), pp. 57–64. Springer-Verlag, Berlin
Robertson, C. R. and Gales, R. P. (eds) (1998) Ecology and Conservation of Albatrosses. Surrey Beatty and Sons, Chipping Norton
Robertson, G. and Newgrain, K. (1992) Efficacy of the tritiated water and 22Na turnover methods in estimating food and energy intake by Emperor penguins Aptenodytes forsteri. Physiol. Zool., 65: 933–51CrossRefGoogle Scholar
Robertson, G. L., Mahr, E. A., Athar, S. and Sinha, T. (1973) Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest., 52: 2340–52CrossRefGoogle ScholarPubMed
Robin, J.-P. (1984) Relation entre les modifications de l'uricacidémie et du catabolisme protéique au cours du jeune prolongé chez le Manchot Empereur et l'Oie domestique. Bull. Soc. Ecophysiol. (Paris), 9: 201–8Google Scholar
Rochford, D. J. (1980) Nutrient status of the oceans around Australia. CSIRO Division of Fisheries and Oceanography Report, 1977–79: 9–20Google Scholar
Rodbard, D. (1978) Data processing for radioimmunoassays: an overview. In Clinical Immunochemistry: Chemical and Cellular Bases and Applications in Disease. Current Topics in Clinical Chemistry (ed. S. J. Natelson, A. J. Pesce and A. A. Dietz), pp. 477–94. American Association for Clinical Chemistry, Washington, DC
Rodbard, D., Munson, P. and De Lean, A. (1978) Radioimmunoassay and related procedures in medicine: improved curve-fitting, parallelism testing, characterization of sensitivity and specificity, validation, and optimization of radioligand assays, vol. 1, pp. 469–504. I.A.E.A., Vienna
Roe, L. J., Thewissen, J. G. M., Quade, J., O'Neil, J. R., Bajpai, S., Sahni, A. and Hussain, S. T. (1998) Isotopic approaches to understanding the terrestrial to marine transition of the earliest cetaceans. In The Emergence of Whales, Evolutionary Patterns in the Origin of Cetacea (ed. J. G. M. Thewissen), pp. 399–421. Plenum Press, New York
Rolfe, D. F. S. and Brand, M. D. (1997) The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci. Rep., 17: 9–16CrossRefGoogle ScholarPubMed
Rooke, I. J. (1984) Research into the biology of the Silvereye leading to methods for minimizing grape damage in vineyards of south-west Australia. Agricultural Protection Board of Western Australia, Perth, WA 6058
Rooke, I. J., Bradshaw, S. D. and Langworthy, R. A. (1983) Aspects of water, electrolyte and carbohydrate physiology of the silvereye (Zosterops lateralis). Aust. J. Zool., 31: 695–704CrossRefGoogle Scholar
Rooke, I. J., Bradshaw, S. D., Langworthy, R. A. and Tom, J. A. (1986) Annual cycle of physiological stress and condition of the silvereye, Zosterops lateralis (Aves). Aust. J. Zool., 34: 493–501CrossRefGoogle Scholar
Ruben, J. A. (1995) The evolution of endothermy in mammals and birds: from physiology to fossils. A. Rev. Physiol., 57: 69–95CrossRefGoogle ScholarPubMed
Rundel, P. W. (1970) Ecological impact of fires on mineral and sediment pools and fluxes. In Fire and Fuel Management in Mediterranean-Climate Ecosystems: Research Priorities and Programmes, ed. J. K. Agee. MAB Technical Note no. 11, pp. 17–21. UNESCO, Paris
Saint Girons, H. and Bradshaw, S. D. (1981) Preliminary observations of behavioural thermoregulation in an elapid snake, the dugite Pseudonaja affinis Günther. J. Roy. Soc. W.A., 64: 13–16Google Scholar
Saltz, D. (1994) Reporting error measures in radio location by triangulation: a review. J. Wildl. Man., 58: 181–3CrossRefGoogle Scholar
Sapirstein, L. A., Vitt, D. G., Mandel, M. J. and Hanusk, G. (1955) Volumes of distribution and clearance of intramuscularly-injected creatinine in the dog. Am. J. Physiol., 181: 330–6Google Scholar
Sapolsky, R. M., Romero, L. M. and Munck, A. U. (2000) How do corticoids influence stress responses? Integrating permissive, suppressive, stimulatory and preparative actions. Endocr. Rev., 21: 55–89Google ScholarPubMed
Sarre, S. and Dearn, J. M. (1991) Morphological and fluctuating asymmetry among insular populations of the sleepy lizard, Trachydosuarus rugosus Gray (Squamata: Scincidae). Aust. J. Zool., 39: 91–104CrossRefGoogle Scholar
Sarre, S., Dearn, J. M. and Georges, A. (1994) The application of fluctuating asymmetry in the monitoring of animal populations. Pacif. Cons. Biol., 1: 118–22CrossRefGoogle Scholar
Schamberger, M. L. and Turner, F. B. (1986) The application of habitat modeling to the desert tortoise (Gopherus agassizii). Herpetologica, 42: 134–8Google Scholar
Schleucher, E. (1993) Life in extreme dryness and heat: a telemetric study of the behaviour of the Diamond dove Geopelia cuneata in its natural habitat. Emu, 93: 251–8CrossRefGoogle Scholar
Schleucher, E., Prinzinger, R. and Withers, P. C. (1991) Life in extreme environments: investigations on the ecophysiology of a desert bird, the Australian Diamond dove (Geopelia cuneata Latham). Oecologia, 88: 72–6CrossRefGoogle Scholar
Schmid, J. R. and Speakman, J. R. (2000) Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. J. Comp. Physiol. B, 170: 633–41CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, B., Schmidt-Nielsen, K., Houpt, T. R. and Jarnum, S. A. (1956) Water balance of the camel. Am. J. Physiol., 185: 185–94Google ScholarPubMed
Schmidt-Nielsen, K. (1960) The salt gland of marine birds. Circulation, 21: 955–67CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K. (1964) Desert Animals: Physiological Problems of Heat and Water. Oxford University Press, Oxford
Schmidt-Nielsen, K., Dawson, T. J., Hammel, H. T., Hinds, D. and Jackson, D. C. (1965) The Jack rabbit-a study in desert survival. Hvalr. Skrif., 48: 125–42Google Scholar
Schmidt-Nielsen, K., O'Dell, R. and Osaki, H. (1961) Interdependence of urea and electrolytes in production of a concentrated urine. Am. J. Physiol., 200: 1125–32Google ScholarPubMed
Schmidt-Nielsen, K. and Robinson, R. R. (1970) Contribution of urea to urinary concentrating ability in the dog. Am. J. Physiol., 218: 1363–9Google ScholarPubMed
Schmidt-Nielsen, K. and Schmidt-Nielsen, B. (1953) The desert rat. Scient. Am., 189: 73–8Google Scholar
Schmidt-Nielsen, K., Schmidt-Nielsen, B., Jarnum, S. A. and Houpt, T. R. (1957) Body temperature of the camel and its relation to water economy. Am. J. Physiol., 186: 103–12Google Scholar
Schnabel, Z. E. (1938) The estimation of the total fish population of a lake. Am. Math. Month., 45: 348–52Google Scholar
Schoeller, D. A. (1993) Development of the Doubly Labeled Water Method for Measuring Energy Expenditure. Proceedings A. O. Nier Symposium on Inorganic Mass Spectrometry, Durango, Colorado
Schoeller, D. A., Leitch, C. A. and Brown, C. (1986) Doubly labelled water method: In vivo oxygen and hydrogen isotope fractionation. Am. J. Physiol., 251: R1137–43Google Scholar
Schoeller, D. A., Santen, E. and Peterson, D. W. (1980) Total body water measurement in humans with 18O and 3H labeled water. Am. J. Clin. Nutr., 33: 2686–93CrossRefGoogle Scholar
Scholander, P. F. (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hvalr. Skrif., 22: 1–131Google Scholar
Scholander, P. F., Irving, L. and Grinnell, S. W. (1942) Aerobic and anaerobic changes in seal muscle during diving. J. Biol. Chem., 142: 431–40Google Scholar
Schumaker, F. X. and Eschmeyer, R. W. (1943) The estimate of fish population in lakes and ponds. J. Tenn. Acad. Sci., 18: 228–49Google Scholar
Schwarzenberger, F., Mostl, E., Palme, R. and Bamberg, E. (1996a) Faecal steroid analysis for non-invasive monitoring of reproductive status in farm, wild and zoo animals. Anim. Reprod. Sci., 42: 515–26CrossRefGoogle Scholar
Schwarzenberger, F., Tomasova, K., Holeckova, D., Matern, B. and Mostl, E. (1996b) Measurement of fecal steroids in the Black rhinocerous (Diceros bicornis) using group-specific enzyme immunoassays for 20-oxo-pregnanes. Zoo Biol., 15: 159–713.0.CO;2-A>CrossRefGoogle Scholar
Seely, M. K., Roberts, C. S. and McClain, E. (1988) Microclimate and activity of the lizard Angolosaurus skoogi on a dune slipface. S. Afr. J. Zool., 23: 92–102CrossRefGoogle Scholar
Sellami, A., Marcilhac, A., Koza, E. and Slaud, P. (2003) Hypothalamo-posthypophysial axis activity of a water-deprived desert rodent, Meriones shawi shawi: comparison with the rat. J. Comp. Physiol. B (in press)Google Scholar
Selye, H. (1936) A syndrome produced by diverse nocuous agents. Nature (Lond.), 138: 32CrossRefGoogle Scholar
Selye, H. (1946) The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocr. Metab., 6: 117–230CrossRefGoogle ScholarPubMed
Selye, H. (1976) Stress in Health and Disease. Butterworths, Montreal
Serventy, D. L. (1971) Biology of desert birds. In Avian Biology (ed. D. S. Farner and J. R. King), vol. 1, pp. 287–339. Academic Press, New York
Serventy, D. L. and Whittell, H. M. (1967) Birds of Western Australia, 3rd edn. Lamb Publications, Perth, Western Australia. 431pp.
Seymor, A. M., Montgomery, M. E., Costello, B. H., Ihle, S., Johnsson, G., St. John, B., Taggart, D. A. and Houlden, B. A. (2001) High effective inbreeding coefficients correlate with morphological abnormalities in populations of South Australian koalas (Phascolarctos cinerus). Anim. Cons., 4: 211–19CrossRefGoogle Scholar
Shaffer, S. A., Costa, D. P. and Weimerskirch, H. (2001) Comparison of methods for evaluating energy expenditure of incubating Wandering albatrosses. Physiol. Biochem. Zool., 74: 823–31CrossRefGoogle ScholarPubMed
Shaffer, S. A., Costa, D. P., Williams, T. M. and Ridgway, S. H. (1997) Diving and swimming performance of White whales, Delphinapterus leucas: an assessment of plasma lactate and blood gas levels and respiratory rates. J. Exp. Biol., 200: 3091–9Google ScholarPubMed
Shoemaker, V. H. (1988) Physiological ecology of amphibians in arid environments. J. Arid Envts, 14: 145–53Google Scholar
Shoemaker, V. H., Hillman, S. S., Hillyard, S. D., Jackson, D. C., McClanahan, L. L., Withers, P. C. and Wygoda, M. L. (1992) Exchange of water, ions, and respiratory gases in terrestrial amphibians. In Environmental Physiology of the Amphibia (ed. M. E. Feder and W. W. Burggren), pp. 125–50. University of Chicago Press, Chicago
Shoemaker, V. H. and Nagy, K. A. (1977) Osmoregulation in amphibians and reptiles. A. Rev. Physiol., 39: 449–71CrossRefGoogle ScholarPubMed
Shoemaker, V. H., Nagy, K. A. and Costa, W. R. (1976) Energy utilisation and temperature regulation by jackrabbits (Lepus californicus) in the Mojave Desert. Physiol. Zool., 49: 364–75CrossRefGoogle Scholar
Short, J., Bradshaw, S. D., Giles, J., Prince, R. I. T. and Wilson, G. R. (1992) Reintroduction of macropods (Marsupialia: Macropodoidea) in Australia - A review. Biol. Cons., 62: 189–204CrossRefGoogle Scholar
Sibley, R. M. and Calow, P. (1989) A life-cycle theory of responses to stress. Biol. J. Linn. Soc., 37: 101–16CrossRefGoogle Scholar
Sicard, B. and Fuminier, F. (1996) Water redistribution and the life cycle in sahelosudanese rodents. Mammalia, 60: 231–8CrossRefGoogle Scholar
Siebert, B. D. and Macfarlane, W. V. (1971) Water turnover and renal function of dromedaries in the desert. Physiol. Zool., 44: 225–40CrossRefGoogle Scholar
Silverin, B. (1985) Cortical activity and breeding success in the pied flycatcher, Ficedula hypoleuca. In Current Trends in Comparative Endocrinology (ed. B. Lofts and W. N. Holmes), pp. 429–31. University of Hong Kong Press, Hong Kong
Silverin, B. (1986) Corticosterone-binding proteins and behavioral effects of high plasma levels of corticosterone in the Pied flycatcher. Gen. Comp. Endocrinol., 64: 67–74CrossRefGoogle ScholarPubMed
Simmons, L. W., Tomkins, J. L., Kotiaho, J. S. and Hunt, J. (1999) Fluctuating paradigm. Proc. R. Soc. Lond. B, 266: 593–5CrossRefGoogle Scholar
Skadhauge, E. (1981) Osmoregulation in Birds. Springer-Verlag, Berlin. 203pp.
Skadhauge, E. and Bradshaw, S. D. (1974) Drinking of saline, and cloacal excretion of salt and water in the Australian Zebra Finch. Am. J. Physiol., 52A: 1236–67Google Scholar
Slip, D. J., Hindell, M. A. and Burton, H. R. (1994) Diving behaviour of southern Elephant seals from Macquarie Island: an overview. In Elephant Seals: Population Ecology, Behavior and Physiology (ed. B. J. Le Boef and R. M. Laws), pp. 253–70. University of California Press, Berkeley, California
Smith, A. P. and Lee, A. K. (1984) The evolution of strategies for survival and reproduction in possums and gliders. In Possums and Gliders (ed. A. P. Smith and A. K. Lee), pp. 17–33. Surrey Beatty and Sons, Sydney
Smith, F. A. and Charnov, E. L. (2001) Fitness trade-offs select for semelparous reproduction in an extreme environment. Evol. Ecol. Res., 3: 595–602Google Scholar
Smith, H. (1951) The Kidney, Structure and Function in Health and Disease. Oxford University Press, Oxford, UK
Smith, H. W. (1932) Water regulation and its evolution in the fishes. Q. Rev. Biol., 7: 1–26CrossRefGoogle Scholar
Song, X., Körtner, G. and Geiser, F. (1995) Reduction of metabolic rate and thermoregulation during daily torpor. J. Comp. Physiol. B, 165: 291–7CrossRefGoogle ScholarPubMed
Spanner, A., Stone, G. M. and Schultz, D. (1997) Excretion profiles of reproductive steroids in the faeces of captive Nepalese Red panda (Ailurus fulgens fulgens). Reprod. Fert. Dev., 9: 565–70CrossRefGoogle Scholar
Speakman, J. R. (1997) Doubly Labelled Water: Theory and Practice. Chapman & Hall, London. 399pp.
Speakman, J. R. and Racey, P. A. (1988) Consequences of non steady-state CO2 production for accuracy of the doubly labelled water technique: the importance of recapture interval. Comp. Biochem. Physiol., 90A: 337–40CrossRefGoogle Scholar
Spencer, B. (1896) Amphibia. In Reports of the Horn Expedition to Central Australia, pp. 152–75. Melville, Mullen and Slade, Melbourne
Spencer, B. and Gillen, F. (1912) Across Australia. Macmillan, London
Sperber, I. (1944) Studies on the mammalian kidney. Zool. Bidr., Upps., 22: 249-432Google Scholar
Stafford Smith, D. M. and Morton, S. R. (1990) A framework for the ecology of arid Australia. J. Arid Envts, 18: 255–78Google Scholar
Stallone, J. N. and Braun, E. J. (1988) Regulation of plasma antidiuretic hormone in the dehydrated kangaroo rat (Dipodomys spectabilis M.). Gen. Comp. Endocrinol., 69: 119–27CrossRefGoogle Scholar
Stead-Richardson, E. J., Bradshaw, S. D., Bradshaw, F. J. and Gaikhorst, G. (2001) Monitoring the oestrous cycle of the chuditch (Dasyurus geoffroii: Marsupialia, Dasyuridae): non-invasive analysis of faecal oestradiol-17β. Aust. J. Zool., 49: 183–93CrossRefGoogle Scholar
Stonehouse, B. (1975) The Biology of Penguins. Macmillan Press, London
Storey, K. B. and Storey, J. M. (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q. Rev. Biol., 65: 145–74CrossRefGoogle ScholarPubMed
Storey, K. B. and Storey, J. M. (1992) Natural freeze tolerance in ectothermic vertebrates. A. Rev. Physiol., 54: 619–37CrossRefGoogle ScholarPubMed
Storr, G. M. (1961) Microscopic analyses of faeces: a technique for ascertaining the diet of herbivorous mammals. Aust. J. Biol. Sci., 14: 157–64Google Scholar
Storr, G. M. (1963) Estimation of dry matter intake in wild herbivores. Nature (Lond.), 197: 307–8CrossRefGoogle Scholar
Storr, G. M. (1964) Studies on marsupial nutrition. IV. Diet of the quokka, Setonix brachyurus (Quoy et Gaimard), on Rottnest Island, Western Australia. Aust. J. Biol. Sci., 17: 469–81Google Scholar
Storr, G. M. (1967) Geographic races of the agamid lizard Amphibolurus caudicinctus. J.R. Soc. W.A., 50: 49–56Google Scholar
Suber, R. L. and Kodell, R. L. (1985) The effect of three phlebotomy techniques on hematological and clinical chemical evaluation in Sprague-Dawley rats. Veter. Clin. Pathol., 14: 23–30CrossRefGoogle ScholarPubMed
Suomalainen, P. (1960) Stress and neurosecretion in the hibernating hedgehog. Bull. Mus. Comp. Zool., 124: 271–83Google Scholar
Swihart, R. K. and Slade, N. A. (1985a) Influence of sampling interval on estimates of home-range size. J. Wildl. Man., 49: 1019–25CrossRefGoogle Scholar
Swihart, R. K. and Slade, N. A. (1985b) Testing for independence of observations in animal movements. Ecology, 66: 1176–84CrossRefGoogle Scholar
Tang, P. L., Pang, S. F. and Reiter, R. J. (1996) Melatonin: a universal photoperiodic signal with diverse actions: International Symposium on Melatonin – A Photoperiodic Signal, Hong Kong, September 18–20, 1995. Karger, Basel, New York. ⅶ + 208pp.
Tarasoff, F. and Toews, D. (1972) The osmotic and ionic regulatory capacities of the kidney of the Harbor seal, Phoca vitulina. J. Comp. Physiol. B, 81: 121–32CrossRefGoogle Scholar
Tatner, P. (1990) Deuterium and oxygen-18 abundance in birds: implications for DLW energetic studies. Am. J. Physiol., 258: R804–12Google Scholar
Taylor, P. (1978) Radioisotopes as metabolic labels for Glossina (Diptera: Glossinidae). II. The excretion of 137Cs under field conditions as a means of estimating energy utilisation, activity, and temperature regulation. Bull. Entom. Res., 68: 331–40CrossRefGoogle Scholar
Tedman, R. A. (1991) The female reproductive tract of the Australian sea lion, Neophoca cinerea (Peron, 1816). Aust. J. Zool., 39: 351–72CrossRefGoogle Scholar
Telfer, N., Cornell, L. H. and Prescott, J. H. (1970) Do dolphins drink water?J. Am. Vet. Med. Ass., 157: 555–8Google ScholarPubMed
Thewissen, J. G. M., Roe, L. J., O'Neil, J. R., Hussain, S. T., Sahni, S. and Bajpai, S. (1996) Evolution of cetacean osmoregulation. Nature (Lond.), 381: 379–80CrossRefGoogle Scholar
Thomas, D. H., Pinshow, B. and Degen, A. A. (1987) Renal and lower intestinal contributions to the water economy of desert-dwelling phasianid birds: comparison of free-living and captive Chukars and Sand partridges. Physiol. Zool., 57: 128–36CrossRefGoogle Scholar
Thompson, D. and Fedak, M. A. (1993) Cardiac responses of grey seals during diving at sea. J. Exp. Biol., 174: 139–54Google ScholarPubMed
Tiebout, H. M. I. and Nagy, K. A. (1991) Validation of the doubly-labeled water method (3HH 18O) for measuring water flux and CO2 production in the tropical hummingbird Amazilia saucerottei. Physiol. Zool., 64: 362–74CrossRefGoogle Scholar
Tieleman, B. I. and Williams, J. B. (1999a) The evolution of rates of metabolism and water flux in desert birds. Acta Ornithol., 34: 173–4Google Scholar
Tieleman, B. I. and Williams, J. B. (1999b) The role of hyperthermia in the water economy of desert birds. Physiol. Biochem. Zool., 72: 87–100CrossRefGoogle Scholar
Tieleman, B. I. and Williams, J. B. (2000) The adjustment of avian metabolic rates and water flux to desert environments. Physiol. Biochem. Zool., 73: 461–79CrossRefGoogle Scholar
Tomkins, J. L. and Simmons, L. W. (2003) Fluctuating asymmetry and sexual selection: paradigm shifts, publication bias and observer expectation. In Developmental Stability: Causes and Consequences (ed. M. Polak). Oxford University Press, New York (in press)
Tracy, C. R. and Sugar, J. (1989) Potential misuse of ANCOVAR: comment on Packard and Boardman. Physiol. Zool., 62: 993–7CrossRefGoogle Scholar
Tracy, R. L. and Walsberb, G. E. (2001) Developmental and acclimatory contributions to water loss in a desert rodent: investigating the time course of adaptive change. J. Comp. Physiol. B, 171: 669–79CrossRefGoogle Scholar
Tucker, V. A. (1973) Metabolism during flight: evaluation of a theory. J. Exp. Biol., 58: 689–709Google Scholar
Turlejska, E. and Baker, M. A. (1986) Elevated CSF osmolality inhibits thermoregulatory heat loss responses. Am. J. Physiol., 251: R749–54Google ScholarPubMed
Turner, F. B., Hayden, P., Burge, B. L. and Roberson, J. B. (1986) Egg production by the desert tortoise (Gopherus agassizii) in California. Herpetologica, 42: 93–104Google Scholar
Berkum, F. H., Huey, R. B. and Adams, B. A. (1986) Physiological consequences of thermoregulation in a tropical lizard (Ameiva festiva). Physiol. Zool., 59: 464–72CrossRefGoogle Scholar
van Beurden, E. (1982) Desert adaptations of Cyclorana platycephala: a holistic approach to desert-adaptation in frogs. In Evolution of the Flora and Fauna of Arid Australia (ed. W. R. Barker and P. J. M. Greenslade), pp. 235–40. Peacock Publications, South Australia, Adelaide
van Devender, T. R. and Moodie, K. B. (1977) The desert tortoise in the late Pleistocene with comments about its earlier history. Proc. Symp. Desert Tortoise Council, 1977, Las Vegas, Nevada, pp. 41–45. The Council, San Diego, California
Devender, T. R., Moodie, K. B. and Harris, A. H. (1976) The desert tortoise (Gopherus agassizi) in the Pleistocene of the northern Chihuahuan desert. Herpetologica, 32: 298–304Google Scholar
Vanherck, H., Baumans, V., Brandt, C., Hesp, A. P. M., Sturkenboom, J. H., Vanlith, H. A., Vantintelen, G. and Beynen, A. C. (1998) Orbital sinus blood sampling in rats as performed by different animal technicians – the influence of technique and expertise. Lab. Anim., 32: 377–86CrossRefGoogle Scholar
Vardy, P. H. and Bryden, M. M. (1981) The kidney of Leptonychotes weddelli (Pinnipedia: Phocidae) with some observations on the kidneys of two other southern phocid seals. J. Morphol., 167: 13–34CrossRefGoogle Scholar
Vitt, L. J. and Pianka, E. R. (1994) Lizard Ecology. Historical and Experimental Perspectives. Princeton University Press, Princeton, New Jersey
Waite, E. (1929) The Reptiles and Amphibians of South Australia. British Science Guild, South Australia, Adelaide
Wallis, I. R., Henen, B. T. and Nagy, K. A. (1999) Egg size and annual egg production by female desert tortoises (Gopherus agassizii): the importance of food abundance, body size, and date of egg shelling. J. Herp., 33: 394–408CrossRefGoogle Scholar
Walter, A. and Hughes, M. R. (1978) Total body water volume and turnover rate in fresh-water and sea-water adapted glaucous-winged gulls, Larus glaucescens. Comp. Biochem. Physiol., 61A: 233–7CrossRefGoogle Scholar
Wang, L. C. H. (1989) Ecological, physiological and biochemical aspects of torpor in mammals and birds. In Advances in Comparative and Environmental Physiology (ed. L. C. H. Wang), pp. 361–401. Springer-Verlag, Berlin
Warburg, M. R. (1997) Ecophysiology of Amphibians Inhabiting Xeric Environments. Springer, Berlin, New York. ⅹⅴ + 182pp.
Wasser, S. K., Hunt, K. E., Brown, J. L., Cooper, K., Crockett, C. M., Bechert, U., Millspaugh, J. J., Larson, S. and Monfort, S. L. (2000) A generalised fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen. Comp. Endocrinol., 120: 260–75CrossRefGoogle Scholar
Wasser, S. K., Monfort, S. L. and Wildt, D. E. (1991) Rapid extraction of faecal steroids for measuring reproductive cyclicity and early pregnancy in free ranging yellow baboons (Papio cynocephalus cynocephalus). J. Reprod. Fert., 92: 415–23CrossRefGoogle Scholar
Weathers, W. W. and Nagy, K. A. (1980) Simultaneous doubly labelled water (3HH 18O) and time-budget estimates of daily energy expenditure in Phainopepla nitens. Auk, 97: 861–7Google Scholar
Weaver, D., Walker, L., Alcorn, D. and Skinner, S. (1994) The contributions of renin and vasopressin to the adaptation of the Australian spinifex hopping mouse (Notomys alexis) to free water deprivation. Comp. Biochem. Physiol., 108A: 107–116CrossRefGoogle Scholar
Wegener, A. (1966) The Origin of Continents and Oceans. (Translated from the 1929 German edition by J. Biram.) Methuen, London
Weimerskirch, H. (1987) Population dynamics of the Wandering albatross (Diomedea exultans) of the Crozet Islands; causes and consequences of the population decline. Oikos, 49: 315–22CrossRefGoogle Scholar
Weimerskirch, H. (1998) Foraging strategies of Indian Ocean Albatrosses and their relationship with fisheries. In Ecology and Conservation of Albatrosses (ed. G. C. Robertson and R. P. Gales), pp. 168–79. Surrey Beatty and Sons, Chipping Norton
Weimerskirch, H., Brothers, N. and Jouventin, P. (1997) Population dynamics of Wandering albatross, Diomedea exulans, and Amsterdam albatross, D. amsterdamensis, in the Indian Ocean and their relationships with long-line fisheries: conservation implications. Biol. Cons., 79: 257–70CrossRefGoogle Scholar
Weimerskirch, H., Catard, A., Prince, P. A., Cherel, Y. and Croxall, J. (1999) Foraging White-chinned petrels Procellaria aequinoctialis at risk: from the tropics to Antarctica. Biol. Cons., 87: 273–5CrossRefGoogle Scholar
Weimerskirch, H., Doncaster, C. P. and Cuenot-Chaillet, F. (1994) Pelagic seabirds and the marine environment: foraging patterns of Wandering albatrosses in relation to prey availability and distribution. Proc. R. Soc. Lond. B, 225: 91–7CrossRefGoogle Scholar
Weimerskirch, H., Guionnet, T., Martin, J., Shaffer, S. A. and Costa, D. P. (2000) Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proc. R. Soc. Lond. B, 267: 1869–74CrossRefGoogle ScholarPubMed
Weimerskirch, H. and Wilson, R. P. (2000) Oceanic respite for Wandering albatrosses. Nature (Lond.), 406: 955–6CrossRefGoogle ScholarPubMed
Weimerskirch, H., Wilson, R. P. and Lys, P. (1997) Activity pattern of foraging in the Wandering albatross: a marine predator with two modes of searching prey. Mar. Ecol. Prog. Ser., 151: 245–54CrossRefGoogle Scholar
Weins, J. A. (1991) The ecology of desert birds. In The Ecology of Desert Communities (ed. G. A. Polis), pp. 278–310. University of Arizona Press, Tucson, Arizona
Whitfield, C. L. and Livezey, R. L. (1973) Thermoregulatory patterns in lizards. Physiol. Zool., 46: 285–96CrossRefGoogle Scholar
Whitelaw, T. G., Brockway, J. M. and Reid, R. S. (1972) Measurement of carbon dioxide production in sheep by isotope dilution. Q. J. Exp. Physiol., 57: 37–55CrossRefGoogle ScholarPubMed
Wilkes, G. E. and Jannsens, P. A. (1986) Development of urine concentrating ability in pouch of a young marsupial, the tammar wallaby (Macropus eugeneii). J. Comp. Physiol. B, 156: 573–82CrossRefGoogle Scholar
Williams, C. K. and Green, B. (1982) Ingestion rates and aspects of water, sodium and energy metabolism in caged swamp buffalo Bubalus bubalis, from isotopic dilution and material balance. Aust. J. Zool., 30: 779–90CrossRefGoogle Scholar
Williams, C. K. and Ridpath, M. G. (1983) Rates of herbage ingestion and turnover of water and sodium in feral swamp buffalo, Bubalus bubalis, in relation to primary production in a cyperaceous swamp in monsoonal northern Australia. Aust. Wildl. Res., 9: 397–408CrossRefGoogle Scholar
Williams, E. E. (1958) Rediscovery of the Australian chelid genus Pseudemydura Siebenrock (Chelidae, Testudines). Breviora, 84: 1–11Google Scholar
Williams, G. C. (1966) Adaptation and Natural Selection: A Critique of some Current Evolutionary Thought. Princeton University Press, Princeton, New Jersey. 307pp.
Williams, J. B. (1996) A phylogenetic perspective of evaporative water loss in birds. Auk, 113: 457–72CrossRefGoogle Scholar
Williams, J. B. (2001) Energy expenditure and water flux of free-living Dune larks in the Namib Desert: A test of the re-allocation hypothesis. Funct. Ecol., 15: 175–85CrossRefGoogle Scholar
Williams, J. B., Bradshaw, S. D. and Schmidt, L. (1995) Field metabolism and water requirements of Spinifex Pigeons (Geophaps plumifera) in Western Australia. Aust. J. Zool., 43: 1–15CrossRefGoogle Scholar
Williams, J. B. and Nagy, K. A. (1984) Daily energy expenditure of Savannah sparrows: comparisons of time-energy budget and doubly-labeled water estimates. Auk, 101: 221–9Google Scholar
Williams, J. B., Ostrowski, S., Bedin, E. and Ismail, K. (2001) Seasonal variation in energy expenditure, water flux and food consumption of Arabian Oryx, Oryx leucoryx. J. Exp. Biol., 204: 2301–11Google Scholar
Williams, J. B., Siegfried, W. R., Milton, S. J., Adams, N. J., Dean, W. R. J., du Plessis, M. A., Jackson, S. and Nagy, K. A. (1993) Field metabolism, water requirements, foraging behavior, and diet of wild ostriches in the Namib Desert. Ecology, 74: 390–404CrossRefGoogle Scholar
Williams, J. B. and Tieleman, B. I. (2000) Flexibility in basal metabolic rate and evaporative water loss among Hoopoe larks exposed to different environmental temperatures. J. Exp. Biol., 203: 3153–9Google ScholarPubMed
Williams, J. B. and Tieleman, B. I. (2001) Physiological ecology and behavior of desert birds. In Current Ornithology (ed. V. J. Nolan and C. F. Thompson), pp. 299–353. Kluwer Academic/Plenum Publishers, New York
Williams, J. B. and Tieleman, B. I. (2002) Ecological and evolutionary physiology of desert birds: a progress report. Am. Zool., 42: 68–75Google ScholarPubMed
Williams, J. B., Withers, P. C., Bradshaw, S. D. and Nagy, K. A. (1991) Metabolism and water flux of captive and free-ranging Australian parrots. Aust. J. Zool., 39: 131–42CrossRefGoogle Scholar
Wilson, D. S., Morafka, D. J., Tracy, C. R. and Nagy, K. A. (1999a) Winter activity of juvenile desert tortoises (Gopherus agassizii) in the Mojave desert. J. Herp., 33: 496–501CrossRefGoogle Scholar
Wilson, D. S., Tracy, C. R., Nagy, K. A. and Morafka, D. J. (1999b) Physical and microhabitat chracteristics of burrows used by juvenile desert tortoises (Gopherus agassizii). Chelon. Cons. Biol., 3: 448–53Google Scholar
Wilson, E. A. (1907) Aves. British National Antarctic Expedition 1901–1904. Bull. Br. Mus. Nat. Hist. Zool., 2: 1–121Google Scholar
Wilson, R. T. (1989) Ecophysiology of the Camelidine and Desert Ruminants. Springer-Verlag, Berlin, New York. ⅹ + 120pp.
Wilz, M. and Heldmaier, G. (2000) Comparison of hibernation, aestivation and daily torpor in the edible dormouse, Glis glis. J. Comp. Physiol. B, 170: 511–21CrossRefGoogle ScholarPubMed
Windle, R. J., Forsling, M. L., Smith, C. P., and Balment, R. J. (1993) Patterns of neurohypophysial release during dehydration in the rat. J. Endocrinol., 137: 311–19CrossRefGoogle ScholarPubMed
Wingfield, J. (2001) Coping with unpredictable environmental events: Mechanisms to avoid and resist stress. In Perspectives in Comparative Endocrinology: Unity and Diversity (ed. H. J. T. Goos, R. K. Rastogi, H. Vaudry and R. Pierantoni), pp. 501–8. Monduzzi Editore, Sorrento, Italy
Wingfield, J. and Silverin, B. (1986) Effects of corticosterone on territorial behavior of free-living male Song sparrows Melospiza melodia. Horm. Behav., 20: 405–17CrossRefGoogle ScholarPubMed
Wingfield, J. C. (1994) Modulation of the adrenocortical response to stress in birds. In Perspectives in Comparative Endocrinology (ed. K. G. Davey, R. E. Peter and S. S. Tobe), pp. 520–8. National Research Council of Canada, Ottawa
Wingfield, J. C., Breuner, C., Jacobs, J., Lynn, S., Maney, D., Ramenofsky, M. and Richardson, R. (1998) Ecological bases of hormone-behavior interactions: the “Emergency Life History Stage”. Am. Zool., 38: 191–206CrossRefGoogle Scholar
Wingfield, J. C., Hegner, R. E., Dufty, A. M. J. and Ball, G. F. (1990) The “Challenge Hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems and breeding strategies. Am. Nat., 136: 829–46CrossRefGoogle Scholar
Wingfield, J. C. and Romero, L. M. (2000) Adrenocortical responses to stress and their modulation in free-living vertebrates. In Handbook of Physiology, Section 7: The Endocrine System, Volume 4: Coping with the Environment (ed. B. S. McEwen), pp. 211–36. Oxford University Press, Oxford
Wingfield, J. C., Smith, J. P. and Farmer, D. S. (1982) Endocrine responses of white-crowned sparrows to environmental stress. Condor, 84: 399–409CrossRefGoogle Scholar
Withers, P. C. (1995) Cocoon formation and structure in the aestivating Australian desert frogs, Neobatrachus and Cyclorana. Aust. J. Zool., 43: 429–41CrossRefGoogle Scholar
Withers, P. C. (1998a) Evaporative water loss and the role of cocoon formation in Australian frogs. Aust. J. Zool., 46: 405–18CrossRefGoogle Scholar
Withers, P. C. (1998b) Urea: diverse functions of a ‘waste’ product. Clin. Exp. Pharm. Physiol., 25: 722–7CrossRefGoogle Scholar
Withers, P. C. and Guppy, M. (1996) Do Australian frogs co-accumulate counteracting solutes with urea during aestivation?J. Exp. Biol., 199: 1809–16Google ScholarPubMed
Withers, P. C., Louw, G. N. and Henschel, J. (1980) Energetics and water relations of Namib desert rodents. S. Afr. J. Zool., 15: 131–45CrossRefGoogle Scholar
Withers, P. C., Richardson, K. C. and Wooller, R. D. (1990) Metabolic physiology of euthermic and torpid honey possums, Tarsipes rostratus. Aust. J. Zool., 37: 685–93CrossRefGoogle Scholar
Withers, P. C. and Thompson, G. G. (2000) Cocoon formation and metabolic depression by aestivating hylid frogs Cyclorana australia and Cyclorana cultripes (Amphibia: Hylidae). J.R. Soc. W. A., 83: 39–40Google Scholar
Withers, P. C. and Williams, J. B. (1990) Metabolic and respiratory physiology of an arid-adapted Australian bird, the Spinifex pigeon. Condor, 92: 961–9CrossRefGoogle Scholar
Wolfe, R. R. (1992) Isolation of urinary NH3. In Radioactive and Stable Isotope Tracers in Biomedicine (ed. R. B. Wolfe), pp. 430–1. Wiley-Liss, Chichester
Wong, W. W. and Klein, P. D. (1987) A review of the techniques for the preparation of biological samples for mass spectrometric measurements of hydrogen-2/hydrogen-1 and oxygen-18/oxygen-16 isotope ratios. Mass. Spectrom. Rev., 5: 313–42CrossRefGoogle Scholar
Wood, R. A., Nagy, K. A., MacDonald, N. S., Wakakuwa, S. T., Beckman, R. J. and Kaaz, H. (1975) Determination of oxygen-18 in water contained in biological samples by charged particle activation. Anal. Chem., 47: 646–50CrossRefGoogle ScholarPubMed
Wooller, R. D., Dunlop, J. N., Klomp, N. I., Meathrel, C. E. and Wienecke, B. C. (1991) Seabird abundance, distribution and breeding in relation to the Leeuwin Current. J. R. Soc. W. A., 74: 129–32Google Scholar
Wooller, R. D., Renfree, M. B., Russell, E. M., Dunning, A., Green, S. W. and Duncan, P. (1981) Seasonal changes in a population of the nectar feeding marsupial Tarsipes spenserae (Marsupialia: Tarsipedidae). J. Zool., Lond., 195: 267–79CrossRefGoogle Scholar
Wooller, R. D., Russell, E. M. and Renfree, M. B. (1983) A technique for sampling pollen carried by vertebrates. Aust. Wildl. Res., 10: 433–4CrossRefGoogle Scholar
Wright, J. W. and Harding, J. W. (1980) Body dehydration in xeric adapted rodents: does the renin-angiotensin system play a role?Comp. Biochem. Physiol., 66A: 181–8CrossRefGoogle Scholar
Yagil, R. and Etzion, Z. (1979) The role of antidiuretic hormone and aldosterone in the dehydrated and rehydrated camel. Comp. Biochem. Physiol., 63: 275–8CrossRefGoogle Scholar
Yallow, R. S. and Berson, S. A. (1960) Immunoassay of endogenous plasma insulin in man. J. Clin. Invest., 39: 1157–75CrossRefGoogle Scholar
Zimmerman, L. C. and Tracy, C. R. (1989) Interactions between the environment and ectothermy and herbivory in reptiles. Physiol. Zool., 62: 374–409CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Don Bradshaw, University of Western Australia, Perth
  • Book: Vertebrate Ecophysiology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840906.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Don Bradshaw, University of Western Australia, Perth
  • Book: Vertebrate Ecophysiology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840906.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Don Bradshaw, University of Western Australia, Perth
  • Book: Vertebrate Ecophysiology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840906.020
Available formats
×