Skip to main content Accessibility help
×
  • Cited by 10
Publisher:
Cambridge University Press
Online publication date:
February 2017
Print publication year:
2017
Online ISBN:
9781316576878

Book description

Practitioners in water engineering rely on a thorough understanding of shallow water flows in order to safeguard our habitat, while at the same time sustaining the water environment. This book proposes a unified theoretical framework for the different types of shallow flow, providing a coherent approach to interpret the behaviour of such flows, and highlighting the similarities and differences. Every major topic in the book is accompanied by worked examples illustrating the theoretical concepts. Practical examples, showcasing inspiring research and engineering applications from the past and present, provide insight into how the theory developed. The book is also supplemented by a range of online resources, available at www.cambridge.org/battjes, including problem sets and computer codes. A solutions manual is available for instructors. This book is intended for students and professionals working in environmental water systems, in areas such as coasts, rivers, harbours, drainage, and irrigation canals.

Awards

Winner, 2017 Choice Outstanding Academic Title

Reviews

'Unsteady Flow in Open Channels … is a modern and insightful introduction to flow phenomena in shallow channels. The book is highly pedagogical; explanations are kept as simple as possible, without loss of generality. Treatment of topics is concise and to the point; formulas are written in a way that makes their interpretation transparent. A major added value, in comparison to other textbooks, is the strong emphasis on the physical dynamics behind mathematical formulations. Much attention is given to the characteristic method, to explain phenomena related to the propagation of flow disturbances. The book also provides a good introduction to numerical solution methods of the shallow water equations. It is an excellent textbook for students, very well suited for academic teaching at undergraduate and graduate levels … It is also a useful handbook for hydraulic engineers; it contains many examples for practical use in hydraulic engineering …'

J. Dronkers - Netherlands Centre for Coastal Research

'The most interesting aspect of this book is the detailed descriptions of the governing equations and the solutions from the use of complex variables and the method of characteristics. The book provides a useful presentation of classical methods to solve the equations for the propagation of waves in rivers and estuaries. … A few Python programs are made available, and a range of online resources, including problem sets and computer codes, are also provided … In summary, Unsteady Flow in Open Channels is truly an excellent addition to the library. It provides a thorough mathematical treatment of wave propagation for a broad range of engineering problems. It is highly instructive and well-presented. The book is affordable to everyone, and its handy format makes it a most desirable classroom companion. It will be treasured by those who want to understand the main concepts of unsteady flow with a solid level of technical detail.'

Pierre Julien Source: Journal of Hydraulic Engineering

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abbott, M. B., and Basco, D. R. 1997. Computational fluid mechanics: an introduction for engineers. Water Science and Technology Library. Longman Scientific & Technical.
Bertrand, G., and Hiver, J. M. 1998. Quatrième Écluse de Lanaye Études des ondes de sassement. Tech. rept. Rapport Intermédiaire 2: Annexes. Laboratoires de Recherches Hydrauliques. Chatelet, Belgium. In French.
Bos, M. G. (ed). 1989. Discharge measurement structures. 3rd edn. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands.
Brickhill, P. 1951. The dam busters. Evans Bros., London.
Chanson, H. 2012. Tidal bores. World Scientific, Singapore.
Chézy, A. 1768. Cited in Rouse and Ince, 1957. Pages 118–119.
Chaudry, M. H. 1993. Open-Channel Flow. Prentice Hall, Englewood Cliffs, N.J.
Courant, R., Friedrichs, K. O., and Lewy, H. 1928. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1–2). In German.
Courant, R., Isaacson, E., and Rees, M. 1952. On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5(3), 243–255.
De Jong, M. P. C., and Battjes, J. A. 2004. Low-frequency sea waves generated by atmospheric convection cells. Journal of Geophysical Research, 109, C01011. doi:10.1029/2003JC001931.
De Saint-Venant, M. 1871. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 73, 147–154. In French.
Dronkers, J. J. 1964. Tidal computations in rivers and coastal waters. North-Holland, Amsterdam.
Dubs, R. 1909. Stollen und Wasserschloß. Pages 219–221 of: Dubs, R., Bataillard, V., and Alliévi, L. (eds), Allgemeine Theorie über die veränderliche Bewegung des Wassers in Leitungen. Verlag von Julius Springer, Berlin. In German.
Elder, J. W. 1959. The dispersion of marked fluid particles in turbulent shear flow. Journal of Fluid Mechanics, 5, 544–560.
Fischer, H. B., List, C., Koh, C., Imberger, J., and Brooks, N. 1979. Mixing in inland and coastal waters. Academic Press. San Diego, CA.
Forel, F. A. 1875. Les Seiches – Vagues d'oscillation fixe des lacs. Verhandlungen der Naturforschenden Gesellschaft, 58, 157–168. In French.
Fox, J. A. 1989. Transient flow in pipes, open channels and sewers. Ellis Horwood, Chichester.
French, R. H. 1985. Open-Channel Hydraulics. McGraw-Hill, New York.
Glaister, P. 1993. Flux difference splitting for open-channel flows. International Journal for Numerical Methods in Fluids, 16(7), 629–654.
Godunov, S. K. 1959. Difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math Sbornik, 271–306. Translated US Joint Publ. Res. Service, JPRS 7226, 1969.
Green, G. 1837. On the motion of waves in a variable canal of small depth and width. In: Ferrers, N. M. (ed), Mathematical papers of the late George Green. Cambridge University Press, Cambridge, 2014.
Harten, A., Lax, P. D., and Van Leer, B. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35–61.
Henderson, F. M. 1966. Open channel flow. Macmillan, New York.
Hetland, M. L. 2005. Beginning Python. Apress, Berkeley, CA.
Ippen, A. T., and Harleman, D. R. F. 1966. Tidal dynamics in estuaries. Pages 493–545 of: Ippen, A. T. (ed), Estuary and coastline hydrodynamics. McGraw-Hill, New York.
Jaeger, C. 1977. Fluid transients (in hydro-electric practice). Blackie & Son, Glasgow.
Keulegan, G. H. 1951. Water-level fluctuations of basins in communication with seas. Tech. rept. 1146. National Bureau of Standards, Washington, DC.
Lamb, H. 1932. Hydrodynamics. Dover, New York.
Langtangen, H. P. 2009. Python scripting for computational science. Springer Verlag, Berlin.
LeVeque, R. J. 1990. Numerical methods for conservation laws. Birkhauser Verlag, Basel.
Lorentz, H. A. 1926. Verslag Staatscommissie Zuiderzee. Tech. rept. In Dutch.
Manning, R. 1889. On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 20, 166–195.
Massau, M. J. 1878. Mémoires sur l'intégration graphique et ses applications. Extrait des Annales de l'Association des ingénieurs sortis des écoles spéciales de Gand. Imprimerie Félix Callewaert Pére, Bruxelles. In French.
Mehta, A. J., and Özsoy, E. 1978. Flow dynamics and nearshore transport. In: Bruun, P. (ed), Stability of tidal inlets. Developments in geotechnical engineering, vol. 23. Elsevier, Amsterdam.
Merrifield, M. A., Firing, Y. L., Aarup, T., Agricole, W., Brundrit, G., Chang-Seng, D., Farre, R., Kilonsky, B., Knight, W., Kong, L., Magori, C., Manurung, P., McCreery, C., Mitchell, W., Pillay, S., Schindele, F., Shillington, F., Testut, L., Wijeratne, E. M. S., Caldwell, P., Jardin, J., Nakahara, S., Porter, F.-Y., and Turetsky, N. 2005. Tide gauge observations of the Indian Ocean tsunami, December 26, 2004. Geophysical Research Letters, 32, L09603, doi:10.1029/2005GL022610.
Miles, W., and Munk, J. 1961. Harbor paradox. ASCE Journal of the Waterways and Harbor Division, 87(3), 111–132.
Nikuradse, J. 1933. Strömungsgezetze in rauhen Rohren. VDI Forschungsheft, 361, 237. In German.
Parsons, W. B. 1918. The Cape Cod Canal. Transactions of the American Society of Civil Engineers, 82, 1–143.
PIANC, Inland Navigation Commission. 2015. Ship behaviour in lock approaches. Tech. rept. 155.
Pironneau, O. 1989. Finite element methods for fluids. Wiley, Chichester.
Prandtl, L. 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik, 5(2), 136. In German.
Priestly, A. 1993. Quasi-Riemannian method for the solution of one-dimensional shallow water flow. Journal of Computational Physics, 106(1), 139–146.
Rehbock, Th. 1929. Wassermessung mit scharfkantigen Überfallwehren. Z. des Vereines Deutscher Ingenieure, 73(24), 817–823. In German.
Reynolds, O. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 186, 123–164.
Rouse, H., and Ince, S. 1957. History of hydraulics. Dover, New York.
Rowbotham, F. 1983. The Severn bore. David & Charles, Newton Abbot.
Rutherford, J. C. 1994. River mixing. Wiley & Sons, New York.
Sanz-Serna, J. M., and Calvo, M. P. 1994. Numerical Hamiltonian problems. Chapman & Hall, London.
Savenije, H. H. G. 2005. Salinity and tides in alluvial estuaries. Elsevier, Amsterdam.
SchÖnfeld, J. C. 1948. Voortplanting en verzwakking van hoogwatergolven op een rivier. De Ingenieur, 4, B1–B17. In Dutch.
Seelig, W. N., and Sorensen, R. M. 1977. Hydraulics of Great Lakes Inlets. Tech. rept. 77-8. Coastal Engineering Research Center, U.S. Army Corps of Engineers.
Stoker, J. J. 1957. Water waves. Interscience Publishers, New York.
Strauss, W. A. 1992. Partial differential equations. John Wiley & Sons, New York.
Streeter, V. L., and Wylie, E. B. 1967. Hydraulic transients. McGraw-Hill, New York.
Strickler, A. 1923. Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme, Kanäle und geschlossene Leitungen. Mitteilungen des Eidg. Amtes für Wasserwirtschaft, 16. In German.
Sturm, T. W. 2001. Open-channel hydraulics. McGraw-Hill, New York.
Terra, G. M. 2005. Nonlinear tidal resonance. Ph.D. thesis, University of Amsterdam, The Netherlands.
Thijsse, J. Th. 1935. A study of the effect upon navigation and upon the upkeep of the banks and bed of canalized rivers of undulatory movements and of currents in the reaches adjacent to locks with high lift. In: Proceedings XVI International Congress of Navigation. PIANC, Brussels.
Thorley, A. R. D. 1991. Fluid transients in pipeline systems. D & L George, Barnet, England.
Tijsseling, A. S. 1993. Fluid-structure interaction in case of waterhammer with cavitation. Ph.D. thesis, Delft University of Technology.
Toffolon, M., and Savenije, H. H. G. 2011. Revisiting linearized one-dimensional tidal propagation. J. Geophys. Res., 116, C07007, doi:10.1029/2010JC006616.
Toro, E. F. 2001. Shock-capturing methods for free-surface shallow flows. Wiley, New York.
Van Mazijk, A. 1996. One-dimensional approach of transport phenomena of dissolved matter in rivers. Ph.D. thesis, Delft University of Technology.
Ven Te, Chow. 1959. Open-channel hydraulics. McGraw-Hill, New York.
Vreugdenhil, C. B. 1994. Numerical methods for shallow-water flow. Water Science and Technology Library. Springer Netherlands.
Wemelsfelder, P. J. 1947. Hoogwatergolf doorbraak Möhnetalsperre. De Ingenieur, 42, B103–B105. In Dutch.
Wesseling, P. 2001. Principles of computational fluid mechanics. Springer Verlag, Berlin.
Williamson, J. 1951. The laws of flow in rough pipes. La Houille Blanche, 6(5), 738–748.
Zienkiewicz, O. C., Taylor, R. L., and Nithiarasu, P. 2014. The finite element method for fluid dynamics. 7th edn. Elsevier, Amsterdam.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.