Skip to main content Accessibility help
  • Print publication year: 2017
  • Online publication date: May 2017

4 - Introduction to Polariton Condensation

from Part I - Introduction
[1] Agranovich, V. M. 1957. On the influence of reabsorption on the decay of fluorescence in molecular crystals. Optika i Spektroskopiya, 3, 84.
[2] Hopfield, J. J. 1958. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev., 112, 1556.
[3] Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y. 1992. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314.
[4] Jacob, Zubin. 2014. Nanophotonics: hyperbolic phonon-polaritons. Nat Mater, 13(12), 1081–1083.
[5] High, Alexander, A., Devlin, Robert, C., Dibos, Alan, Polking, Mark, Wild, Dominik, S., Perczel, Janos, de, Leon, Nathalie, P., Lukin, Mikhail, D., and Park, Hongkun. 2015. Visible-frequency hyperbolic metasurface. Nature, 522(7555), 192–196.
[6] Keeling, J., Marchetti, F. M., Szymanska, M. H., and Littlewood, P. B. 2007. Topical review: collective coherence in planar semiconductor microcavities. Semiconductor Science Technology, 22, 1.
[7] Yamamoto, Y., Tassone, F., and Cao, H. 2000. Semiconductor Cavity Quantum Electrodynamics.Berlin: Springer-Verlag.
[8] Kavokin, A., and Malpuech, G. 2003. Cavity Polaritons, Vol. 32, Thin Films and Nanostructures. New York: Elsevier.
[9] Littlewood, P. B., Eastham, P. R., Keeling, J.M.J., Marchetti, F. M., Simons, B. D., and Szymanska, M. H. 2004. Models of coherent exciton condensation. Journal of Physics Condensed Matter, 16, 3597.
[10] Deng, Hui, Haug, Hartmut, and Yamamoto, Yoshihisa. 2010. Exciton-polariton Bose- Einstein condensation. Rev. Mod. Phys., 82, 1489–1537.
[11] Keeling, J., Szymańska, M. H., and Littlewood, P. B. 2010. Keldysh Green's function approach to coherence in a non-equilibrium steady state: connecting Bose- Einstein condensation and lasing. Pages 293–329 of: Nanosscience and Technology, vol. 0: Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures. Edited by Slavcheva, Gabriela, and Roussignol, Philippe. Berlin, Heidelburg: Springer. Page 293.
[12] Richard, Maxime, Kasprzak, Jacek, Baas, Augustin, Kundermann, Stefan, Lagoudakis, Konstantinos, Wouters, Michiel, Carusotto, Iacopo, Andre, Regis, Deveaud-Pledran, Benoit, and Dang, Le. 2010. Exciton-polariton Bose-Einstein condensation: advances and issues. International Journal of Nanotechnology, 7(4–8), 668–685.
[13] Szymańska, M. H., Keeling, J., and Littlewood, P. B. 2013. Non-equilibrium Bose- Einstein condensation in a dissipative environment. Pages 447–459 of: Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics.Edited by Proukakis, Nick, et al. World Scientific Publishing.
[14] Byrnes, T., Kim, N. Y., and Yamamoto, Y. 2014. Exciton-polariton condensates. Nature Physics, 10, 803–813.
[15] Carusotto, Iacopo, and Ciuti, Cristiano. 2013. Quantum fluids of light. Rev. Mod. Phys., 85, 299–366.
[16] Kamide, Kenji, and Ogawa, Tetsuo. 2010. What determines the wave function of electron–hole pairs in polariton condensates? Phys. Rev. Lett., 105, 056401.
[17] Dang, Le, Si, Heger, D., André, R., Boeuf, F., and Romestain, R. 1998. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett., 81, 3920–3923.
[18] Senellart, P., and Bloch, J. 1999. Nonlinear emission of microcavity polaritons in the low density regime. Phys. Rev. Lett., 82, 1233–1236.
[19] Dasbach, G., Baars, T., Bayer, M., Larionov, A., and Forchel, A. 2000. Coherent and incoherent polaritonic gain in a planar semiconductor microcavity. Phys. Rev. B, 62, 13076–13083.
[20] Deng, Hui, Weihs, Gregor, Santori, Charles, Bloch, Jacqueline, and Yamamoto, Yoshihisa. 2002. Condensation of semiconductor microcavity exciton polaritons. Science, 298(5591), 199–202.
[21] Savvidis, P. G., Baumberg, J. J., Stevenson, R. M., Skolnick, M. S., Whittaker, D. M., and Roberts, J. S. 2000. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett., 84, 1547–1550.
[22] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M., Marchetti, F. M., Szymanska, M. H., André, R, Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, Le, Si. 2006. Bose-Einstein condensation of exciton polaritons. Nature, 443(7110), 409–414.
[23] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L., and West, K. 2007. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316(5827), 1007–1010.
[24] Kna-Cohen, S., and Forrest, S. R. 2010. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 4, 371–375.
[25] Nelsen, B., Balili, R., Snoke, D. W., Pfeiffer, L., and West, K. 2009. Lasing and polariton condensation: two distinct transitions in GaAs microcavities with stress traps. Journal of Applied Physics, 105, 122414.
[26] Yamaguchi, M., Kamide, K., Nii, R., Ogawa, T., and Yamamoto, Y. 2013. Second thresholds in BEC-BCS-laser crossover of exciton–polariton systems. Phys. Rev. Lett., 111, 026404.
[27] Shelykh, I. A., Rubo, Yuri, G., Malpuech, G., Solnyshkov, D. D., and Kavokin, A. 2006. Polarization and propagation of polariton condensates. Phys. Rev. Lett., 97, 066402.
[28] Laussy, Fabrice P., Shelykh, Ivan, A., Malpuech, Guillaume, and Kavokin, Alexey. 2006. Effects of Bose-Einstein condensation of exciton polaritons in microcavities on the polarization of emitted light. Phys. Rev. B, 73, 035315.
[29] Roumpo, Georgios, Lohs, Michael, Nitsche, Wolfgang, H., Jonathan, Keeling, Marzena, Szymaska, Littlewood, Peter, B., Löffler, Andreas, Höfling, Sven, Worschech, Lukas Forchel, Alfred, and Yamamoto, Yoshihisa. 2012. Power-law decay of the spatial correlation function in exciton–polariton condensates. PNAS, 109, 6467–6472.
[30] Nitsche, W.H., Kim, N.Y., Roumpos, G., Schneider, C., Kamp, M., Höfling, S., Forchel, A., and Yamamoto, Y. 2014. Algebraic order and the Berezinskii-Kosterlitz- Thouless transition in an exciton–polariton gas. Phys. Rev. B, 90, 205430.
[31] Liu, Gangqiang, Snoke, David W., Daley, Andrew, Pfeiffer, Loren|N., and West, Ken. 2015. A new type of half-quantum circulation in a macroscopic polariton spinor ring condensate. Proceedings of the National Academy of Sciences, 112(9), 2676–2681.
[32] Utsunomiya, S., Tian, L., Roumpos, G., Lai1, C.W., Kumada, N., Fujisawa, T., Kuwata-Gonokami, M., Löffler, A., Höfling, S., Forchel, A., and Yamamoto, Y. 2008. Observation of Bogoliubov excitations in exciton–polariton condensates. Nature Physics, 4, 700–705.
[33] Rubo, Yuri, G. 2007. Half vortices in exciton polariton condensates. Phys. Rev. Lett., 99, 106401.
[34] Lagoudakis, K.G., Ostatnický, T., Kavokin, A.V., Rubo, Y.G., André, R., and Deveaud-Plédran, B. 2009. Observation of half-quantum vortices in an exciton– polariton condensate. Science, 326(Nov.), 974.
[35] Amo, Alberto, Lefrère, Jérôme, Pigeon, Simon, Adrados, Claire, Ciuti, Cristiano, Carusotto, Iacopo, Houdr, Romuald, Giacobino, Elisabeth, and Bramati, Alberto. 2009. Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 5, 805–810.
[36] Steger, M., Liu, G., Nelsen, B., Gautham, C., Snoke, D.W., Balili, R., Pfeiffer, L., and West, K. 2013. Long-range ballistic motion and coherent flow of long-lifetime polaritons. Phys. Rev. B, 88, 235314.
[37] Dicke, R.H. 1954. Coherence in spontaneous radiation processes. Phys. Rev., 93, 99–110.
[38] Garraway Barry, M. 2011. The Dicke model in quantum optics: Dickemodel revisited. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1939), 1137–1155.
[39] Ćwik, J.A., Reja, S., Littlewood, P.B., and Keeling, J. 2014. Polariton condensation with saturable molecules dressed by vibrational modes. EPL (Europhysics Letters), 105(Feb.), 47009.
[40] Marchetti, F.M., Keeling, J., Szymańska, M.H., and Littlewood, P.B. 2006. Thermodynamics and excitations of condensed polaritons in disordered microcavities. Phys. Rev. Lett., 96, 066405.
[41] Eastham, P.R., and Littlewood, P.B. 2000. Bose condensation in a model microcavity. Solid State Communications, 116, 357–361.
[42] Eastham, P.R., and Littlewood, P.B. 2001. Bose condensation of cavity polaritons beyond the linear regime: the thermal equilibrium of a model microcavity. Phys. Rev. B, 64, 235101.
[43] Keeling, J., Eastham, P.R., Szymanska, M.H., and Littlewood, P.B. 2005. BCS-BEC crossover in a system of microcavity polaritons. Phys. Rev. B, 72, 115320.
[44] Szymańska, M.H., Keeling, J., and Littlewood, P.B. 2006. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett., 96, 230602.
[45] Wouters, Michiel, and Carusotto, Iacopo. 2007. Excitations in a nonequilibrium Bose- Einstein condensate of exciton polaritons. Phys. Rev. Lett., 99, 140402.
[46] Rodriguez, S.R.K., Chen, Y.T., Steinbusch, T.P., Verschuuren, M.A., Koenderink, A.F., and Rivas, J.G. 2014. From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab. Phys. Rev. B, 90, 235406.
[47] Jacqmin, T., Carusotto, I., Sagnes, I., Abbarchi, M., Solnyshkov, D.D., Malpuech, G., Galopin, E., Lemaêtre, A., Bloch, J., and Amo, A. 2014. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett., 112, 116402.
[48] Sala, V.G., Solnyshkov, D.D., Carusotto, I., Jacqmin, T., Lemaître, A., TerÇas, H., Nalitov, A., Abbarchi, M., Galopin, E., Sagnes, I., Bloch, J., Malpuech, G., and Amo, A. 2015. Spin-orbit coupling for photons and polaritons in microstructures. Phys. Rev. X, 5, 011034.
[49] Xing, G.N., Mathews, S.S., Lim, N., Yantara, X., Liu, D., Sabba, M., Gratzel, S., Mhaisalkar, S. and, Sum, T.Z. 2014. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 13, 476–480.
[50] Fei, Z., Scott, M., Gosztola, D.J., Foley, J.J., Yan, J., Mandrus, D.G., Wen, H., Zhou, P., Zhang, D.W., Sun, Y., Guest, J.R., Gray, S.K., Bao, W., Wiederrecht, G.P., and Xu, X. 2016. Nano-optical imaging of exciton polaritons inside WSe2 waveguides. Phys. Rev. B 94, 081402(R).
[51] Dai, S., Ma, Q., Liu, M.K., Andersen, T., Fei, Z., Goldflam, M.D., Wagner, M., Watanabe, K., Taniguchi, T., Thiemens, M., Keilmann, F., Janssen, G. C. A, M., Zhu, S-E., Jarillo-Herrero, P., Fogler, M.M., and Basov, D.N. 2015. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nano, 10(8), 682–686.
[52] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468(Nov), 545–548.
[53] Schmitt, Julian, Damm, Tobias, Dung, David, Vewinger, Frank, Klaers, Jan, and Weitz, Martin. 2014. Observation of grand-canonical number statistics in a photon Bose-Einstein condensate. Phys. Rev. Lett., 112, 030401.
[54] Kirton, P., and Keeling, J. 2013. Nonequilibrium model of photon condensation. Phys. Rev. Lett., 111, 100404.
[55] Kirton, P., and Keeling, J. 2015. Thermalization and breakdown of thermalization in photon condensates. Phys. Rev. A, 91, 033826.
[56] Ningyuan, J., Georgakopoulos, A., Ryou, A., Schine, N., Sommer, A., and Simon, J. 2016. Observation and characterization of cavity Rydberg polaritons. Phys. Rev. A 93, 041802(R).
[57] Edelman, A., and Littlewood, P.B. 2015. Physica B – Condensed Matter, 460, 260– 263.
[58] Sommer, A., Büchler H, P. and Simon, J. 2015. Quantum crystals and Laughlin droplets of cavity Rydberg polaritons. arXiv:1506.00341.
[59] Abbarchi, M., Amo, A., Sala, V.G., Solnyshkov, D.D., Flayac, H., Ferrier, L., Sagnes, I., Galopin, E., Lemaitre, A., Malpuech, G., and Bloch, J. 2013. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nat Phys, 9(5), 275–279.
[60] Tosi, G., Christmann, G., Berloff, N.G., Tsotsis, P., Gao, T., Hatzopoulos, Z., Savvidis, P.G., and Baumberg, J.J. 2012. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat Commun, 3(12), 1243.
[61] Dreismann, Alexander, Cristofolini, Peter, Balili, Ryan, Christmann, Gabriel, Pinsker, Florian, Berloff, Natasha, G., Hatzopoulos, Zacharias, Savvidis, Pavlos, G., and Baumberg, Jeremy, J. 2014. Coupled counterrotating polariton condensates in optically defined annular potentials. Proceedings of the National Academy of Sciences, 111(24), 8770–8775.
[62] Berloff, N.G., and Keeling, J. 2013. Universality in modelling non-equilibrium pattern formation in polariton condensates. ArXiv e-prints, arXiv:1303.6195.
[63] Eastham, P.R., and Phillips, R.T. 2009. Quantum condensation from a tailored exciton population in a microcavity. Phys. Rev. B, 79, 165303.
[64] Brierley, R.T., Littlewood, P.B., and Eastham, P.R. 2011. Amplitude-mode dynamics of polariton condensates. Phys. Rev. Lett., 107, 040401.
[65] Keeling, J. 2011. Superfluid density of an open dissipative condensate. Phys. Rev. Lett., 107, 080402.