Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T18:12:48.562Z Has data issue: false hasContentIssue false

2 - A History of Bose-Einstein Condensation of Atomic Hydrogen

from Part I - Introduction

Published online by Cambridge University Press:  18 May 2017

T. Greytak
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
D. Kleppner
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A, Einstein. 1924. Quantum theory of the monatomic ideal gas. Proc. Prussian Acad. of Sciences 22, 261–277.Google Scholar
[2] S. N, Bose. 1924. Planck's law and the light quantum hypothesis. Z. Physik 26, 178.Google Scholar
[3] W., Kolos and L., Wolniewicz. 1965. Potential-energy curves for the X 1Σg+, b 3Σu+, and C 1πu ustates of the hydrogen molecule. J. Chem. Phys. 43, 2429.Google Scholar
[4] C. E., Hecht. 1959. The possible superfluid behaviour of hydrogen atom gases and liquids. Physica 25, 1159;Google Scholar
[5] J. De, Boer. 1948. Quantum theory of condensed permanent gases: I. The law of corresponding states. Physica 14, 139; J. De, Boer and B. S., Blaisse. 1948. Quantum theory of condensed permanent gases: II. The solid state and the melting line. Physica 14, 149; J. De, Boer and R. J., Lunbeck, Quantum theory of condensed permanent gases: III. The equation of state of liquids. Physica 14, 520.Google Scholar
[6] R. D., Etters, J. V., DuganJr., and R. W, Palmer. 1975. The ground state properties of spin-aligned atomic hydrogen, deuterium, and tritium. J. Chem. Phys. 62, 313.Google Scholar
[7] J. V., DuganJr. and R. D., Etters. 1973. Ground state properties of spin-aligned atomic hydrogen. J. Chem. Phys. 59, 6171.Google Scholar
[8] W. C., Stwalley and L. H., Nosanow. 1976. Possible “new” quantum systems. Phys. Rev. Lett. 36, 910.Google Scholar
[9] M. H., Anderson, J. R., Ensher, M. R., Matthews, C. E., Wieman, and E. A., Cornell. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198.Google Scholar
[10] K. B., Davis, M.-O., Mewes, M. R., Andrews, N. J. van, Druten, D. S., Durfee, D. M., Kurn, and W., Ketterle. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969.Google Scholar
[11] C. C., Bradley, C. A., Sackett, J. J., Tollett, and R. G., Hulet. 1995. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687; C. C., Bradley, C. A., Sackett, and R. G., Hulet. 1997. Bose-Einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett.78, 985.Google Scholar
[12] S. B., Crampton, T. J., Greytak, D., Kleppner, W. D., Phillips, D. A., Smith, and A., Weinrib. 1979. Hyperfine resonance of gaseous atomic hydrogen at 4.2 K. Phys. Rev. Lett. 42, 1039.Google Scholar
[13] N. W., Hardy, A. J., Berlinsky, and L. A., Whitehead. 1979. Magnetic resonance studies of gaseous atomic hydrogen at low temperatures. Phys. Rev. Lett. 42, 1042.Google Scholar
[14] I. F., Silvera and J. T. M., Walraven. 1980. Stabilization of atomic hydrogen at low temperature. Phys. Rev. Lett. 44, 164; see also J. T. M., Walraven, I. F., Silvera, and A. P. M., Matthey. 1980. Magnetic equation of state of a gas of spin-polarized atomic hydrogen. Phys. Rev. Lett. 45, 449.Google Scholar
[15] R. W., Cline, D. A., Smith, T. J., Greytak, and D., Klepper. 1980. Magnetic confinement of spin-polarized atomic hydrogen. Phys. Rev. Lett. 45, 2117.Google Scholar
[16] B. W., Statt and A. J., Berlinsky. 1980. Theory of spin relaxation and recombination in spin-polarized atomic hydrogen. Phys. Rev. Lett. 45, 2105.Google Scholar
[17] M., Morrow, R., Jochemsen, A. J., Berlinsky, and W. N., Hardy. 1981. Zero-field hyperfine resonance of atomic hydrogen for 0.18<∼T<∼1 K: The binding energy of H on liquid He4. Phys. Rev. Lett. 46, 195. Erratum published as Phys Rev. Lett. 47, 455.Google Scholar
[18] A. P. M., Matthey, J. T. M., Walraven, and I. F., Silvera. 1981. Measurement of pressure of gaseous H↓: Adsorption energies and surface recombination rates on helium. Phys. Rev. Lett. 46, 668.Google Scholar
[19] R. W., Cline, T. J., Greytak, and D., Kleppner. 1981. Nuclear polarization of spinpolarized hydrogen. Phys. Rev. Lett. 47, 1195.Google Scholar
[20] H. F., Hess, D. A., Bell, G. P., Kochanski, R. W., Cline, D., Kleppner, and T. J., Greytak. 1983. Observation of three-body recombination in spin-polarized hydrogen. Phys. Rev. Lett. 51, 483; H. F., Hess, D. A., Bell, G. P., Kochanski, D., Kleppner, and T. J., Greytak. 1984. Temperature and magnetic field dependence of three-body recombination in spin-polarized hydrogen. Phys. Rev. Lett. 52, 1520.Google Scholar
[21] R., Sprik, J. T. M., Walraven, and I. F., Silvera. 1983. Compression of spin-polarized hydrogen to high density. Phys. Rev. Lett. 51, 479. Erratum published as Phys. Rev. Lett. 51, 942.Google Scholar
[22] Yu., Kagan, G. V., Shlyapnikov, I. V., Vartanyantz, and N. A., Glukhov. 1982. Quasi-2-dimensional spin-polarized atomic-hydrogen. JETP Letters 35(9), 477–481.Google Scholar
[23] D. A., Bell, H. F., Hess, G. P., Kochaski, S., Buchman, L., Pollack, Y. M., Xiao, D., Kleppner, and T. J., Greyta. 1986. Relaxation and recombination in spin-polarized atomic hydrogen. Phys. Rev. B 34, 7670.Google Scholar
[24] H. F., Hess. 1986. Evaporative cooling of magnetically trapped and compressed spinpolarized hydrogen. Phys. Rev. B 34, 3476.Google Scholar
[25] D. E., Pritchard. 1983. Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett. 51, 1336.Google Scholar
[26] H. F., Hess, G. P., Kochanski, J. M., Doyle, N., Masuhara, D., Kleppner, and T. J., Greytak. 1987. Magnetic trapping of spin-polarized atomic hydrogen. Phys. Rev. Lett. 59, 672; N., Masuhara, J. M., Doyle, J. C., Sandberg, D., Kleppner, T. J., Greytak, H. F., Hess, and G. P., Kochanski. 1988. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935.Google Scholar
[27] T. J., Greytak. 1995. Prospects for Bose-Einstein condensation in magnetically trapped atomic hydrogen, in A., Griffin, D. W., Snoke, and S., Stringari (eds.), Bose-Einstein Condensation (Cambridge University Press, Cambridge, England), p. 131.
[28] D. E., Pritchard, K., Helmerson, and A. G., Martin. 1989. Atom traps, in S., Haroche, J. C., Gay, and G., Grynberg (eds.), Atomic Physics 11 (World Scientific, Singapore), p. 179.
[29] W., Petrich, M. H., Anderson, J. R., Ensher, and E. A., Cornell. 1995. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74, 3352; K. B., Davis, M.-O., Mewes, M. A., Joffe, M. R., Andrews, and W., Ketterle, 1995. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74, 5202.Google Scholar
[30] C. L., Cesar, D. G., Fried, T. C., Killian, A. D., Polcyn, J. C., Sandberg, I. A., Yu, T. J., Greytak, D., Kleppner, and J. M., Doyle. 1996. Two-photon spectroscopy of trapped atomic hydrogen. Phys. Rev. Lett. 77, 255.Google Scholar
[31] M. J., Jamieson, A., Dalgarno, and J. M., Doyle. 1996. Scattering lengths for collisions of ground state and metastable state hydrogen atoms. Mol. Phys., 87, 817.Google Scholar
[32] T. C., Killian, D. G., Fried, L., Willmann, D., Landhuis, S. C., Moss, T. J., Greytak, and D., Kleppner. 1998. Cold collision frequency shift of the 1S- 2S transition in hydrogen Phys. Rev. Lett. 81, 3807.Google Scholar
[33] D. G., Fried, T. C., Killian, L., Willmann, D., Landhuis, S. C., Moss, D., Kleppner, and T. J., Greytak. 1998. Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811.Google Scholar
[34] S. C., Moss. 2002. Formation and decay of a Bose-Einstein condensate in atomic hydrogen. Ph.D. thesis, Massachusetts Institute of Technology.
[35] M. J., Jamieson, A., Dalgarno, and M., Kimura. 1995. Scattering lengths and effective ranges for He-He and spin-polarized H-H and D-D scattering. Phys. Rev. A 51, 2626.Google Scholar
[36] T. J., Greytak, D., Kleppner, D. G., Fried, T. C., Killian, L., Willmann, D., Landhuis, and S. C., Moss. 2000. Bose-Einstein condensation in atomic hydrogen. Physica B 280, 20.Google Scholar
[37] Yu., Kagan, I. A., Vartanyantz, and G., Shlyapnikov. 1982. Kinetics of decay of metastable gas phase of polarized atomic hydrogen at low temperatures. JETP 54, 590Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×