Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T13:55:08.633Z Has data issue: false hasContentIssue false

Chapter 10 - Varicella Zoster Virus Vasculopathy

from Section 1 - Infectious Conditions

Published online by Cambridge University Press:  15 June 2018

Louis Caplan
Affiliation:
Beth Israel-Deaconess Medical Center, Boston
José Biller
Affiliation:
Loyola University Stritch School of Medicine, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amlie-Lefond, C., Kleinschmidt-DeMasters, B. K., Mahalingam, R., Davis, L. E., and Gilden, D. H. 1995. The vasculopathy of varicella-zoster virus encephalitis. Ann Neurol, 37, 784–90.CrossRefGoogle ScholarPubMed
Askalan, R., Laughlin, S., Mayank, S., et al. 2001. Chickenpox and stroke in childhood: A study of frequency and causation. Stroke, 32, 1257–62.Google Scholar
Aurelius, E., Johansson, B., Skoldenberg, B., Staland, A., and Forsgren, M. 1991. Rapid diagnosis of herpes simplex encephalitis by nested polymerase chain reaction assay of cerebrospinal fluid. Lancet, 337, 189–92.Google Scholar
Baudouin, E., and Lantuejoul, P. 1919. Les troublecas moteurs dans le zona. Gazette des Hopitaux.Google Scholar
Braun, K. P., Bulder, M. M., Chabrier, S., et al. 2009. The course and outcome of unilateral intracranial arteriopathy in 79 children with ischaemic stroke. Brain, 132, 544–57.Google Scholar
Breuer, J., Pacou, M., Gauthier, A., and Brown, M. M. 2014. Herpes zoster as a risk factor for stroke and TIA: A retrospective cohort study in the UK. Neurology, 82, 206–12.CrossRefGoogle Scholar
Cheng-Ching, E., Jones, S., Hui, F. K., et al. 2015. High-resolution MRI vessel wall imaging in varicella zoster virus vasculopathy. J Neurol Sci, 351, 168–73.Google Scholar
Ciccone, S., Faggioli, R., Calzolari, F., et al. 2010. Stroke after varicella-zoster infection: Report of a case and review of the literature. Pediatr Infect Dis J, 29, 864–7.Google Scholar
Devinsky, O., Cho, E. S., Petito, C. K., and Price, R. W. 1991. Herpes zoster myelitis. Brain, 114, 1181–96.Google Scholar
Ferry, G., Lonchampt, M., Pennel, L., et al. 1997. Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Lett, 402, 111–5.Google Scholar
Frid, M.G., Brunetti, J. A., Burke, D. L., et al. 2006. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol, 168, 659–69.CrossRefGoogle ScholarPubMed
Fukumoto, S., Kinjo, M., Hokamura, K., and Tanaka, K. 1986. Subarachnoid hemorrhage and granulomatous angiitis of the basilar artery: Demonstration of the varicella-zoster-virus in the basilar artery lesions. Stroke, 17, 1024–8.CrossRefGoogle ScholarPubMed
Gilden, D. H., Beinlich, B. R., Rubinstien, E. M., et al. 1994. Varicella-zoster virus myelitis: An expanding spectrum. Neurology, 44, 1818–23.CrossRefGoogle ScholarPubMed
Gilden, D. H., Kleinschmidt-DeMasters, B. K., Wellish, M., et al. 1996. Varicella zoster virus, a cause of waxing and waning vasculitis: New England Journal of Medicine case 5–1995 revisited. Neurology, 47, 1441–6.Google Scholar
Gilden, D., White, T., Khmeleva, N., et al. 2015. Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology, 84, 1948–55.Google Scholar
Gilden, D., White, T., Khmeleva, N., Boyer, P. J., and Nagel, M. A. 2016. VZV in biopsy-positive and -negative giant cell arteritis: Analysis of 100+ temporal arteries. Neurol Neuroimmunol Neuroinflamm, 3, e16.CrossRefGoogle ScholarPubMed
Hartney, T., Birari, R., Venkataraman, S., et al. 2011. Xanthine oxidase-derived ROS upregulate Egr-a via ERK ½ in PA smooth muscle cells; model to test impact of extracellular ROS in chronic hypoxia. PLoS One, 6, doi: 10.1371/journal/pone.0027531.Google Scholar
Haug, A., Mahalingam, R., Cohrs, R. J., et al. 2010. Recurrent polymorphonuclear pleocytosis with increased red blood cells caused by varicella zoster virus infection of the central nervous system: Case report and review of the literature. J Neurol Sci, 292, 85–8.Google Scholar
Heymann, A. D., Chodick, G., Karpati, T., et al. 2008. Diabetes as a risk factor for herpes zoster infection: Results of a population-based study in Israel. Infection, 36, 226–30.CrossRefGoogle ScholarPubMed
Hsieh, C. C., Yen, M. H., Yen, C. H., and Lau, Y. T. 2001. Oxidized low density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovasc Res, 49, 135–45.Google Scholar
Itoh, Y., and Nagase, H. 1995. Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. J Biol Chem, 270, 16518–21.Google Scholar
Kang, J. H., Ho, J. D., Chen, Y. H., and Lin, H. C. 2009. Increased risk of stroke after a herpes zoster attack: A population-based follow-up study. Stroke, 40, 3443–8.Google Scholar
Langan, S. M., Minassian, C., Smeeth, L., and Thomas, S. L. 2014. Risk of stroke following herpes zoster: A self-controlled case-series study. Clin Infect Dis, 58, 1497–503.Google Scholar
Lanthier, S., Armstrong, D., Domi, T., and deVeber, G. 2005. Post-varicella arteriopathy of childhood: Natural history of vascular stenosis. Neurology, 64, 660–3.CrossRefGoogle ScholarPubMed
Li, J., Li, W., Su, J., et al. 2003. Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: Possible relation to neurodegenerative diseases and strokes. Brain Res Bull, 62, 101–6.Google Scholar
Liberman, A. L., Nagel, M. A., Hurley, M. C., et al. 2014. Rapid development of 9 cerebral aneurysms in varicella-zoster virus vasculopathy. Neurology, 82, 2139–41.Google Scholar
Lin, H. C., Chien, C. W., and Ho, J. D. 2010. Herpes zoster ophthalmicus and the risk of stroke: A population-based follow-up study. Neurology, 74, 792–7.Google Scholar
Mathias, M., Nagel, M.A., Khmeleva, N., et al. 2013. VZV multifocal vasculopathy with ischemic optic neuropathy, acute retinal necrosis and temporal artery infection in the absence of zoster rash. J Neurol Sci, 325, 180–2.CrossRefGoogle ScholarPubMed
Minassian, C., Thomas, S. L., Smeeth, L., et al. 2015. Acute cardiovascular events after herpes zoster: A self-controlled case series analysis in vaccinated and unvaccinated older residents of the United States. PLoS Med, 12, e1001919.Google Scholar
Miravet, E., Danchaivijitr, N., Basu, H., Saunders, D. E., and Ganesan, V. 2007. Clinical and radiological features of childhood cerebral infarction following varicella zoster virus infection. Dev Med Child Neurol, 49, 417–22.Google Scholar
Nagel, M. A., Forghani, B., Mahalingam, R., et al. 2007. The value of detecting anti-VZV IgG antibody in CSF to diagnose VZV vasculopathy. Neurology, 68, 1069–73.Google Scholar
Nagel, M. A., Cohrs, R. J., Mahalingam, R., et al. 2008. The varicella zoster virus vasculopathies: clinical, CSF, imaging, and virologic features. Neurology, 70, 853–60.Google Scholar
Nagel, M. A., Traktinskiy, I., Azarkh, Y., et al. 2011. Varicella zoster virus vasculopathy: Analysis of virus-infected arteries. Neurology, 77, 364–70.Google Scholar
Nagel, M. A., Traktinskiy, I., Choe, A., Rempel, A., and Gilden, D. 2012. Varicella-zoster virus expression in the cerebral arteries of diabetic subjects. Arch Neurol, 69, 142–4.Google Scholar
Nagel, M. A., Bennett, J. L., Khmeleva, N., et al. 2013a. Multifocal VZV vasculopathy with temporal artery infection mimics giant cell arteritis. Neurology, 80, 2017–21.Google Scholar
Nagel, M. A., Choe, A., Khmeleva, N., et al. 2013b. Search for varicella zoster virus and herpes simplex virus-1 in normal human cerebral arteries. J Neurovirol, 19, 181–5.Google Scholar
Nagel, M.A., Khmeleva, N., Boyer, P.J., Choe, A., Bert, R., and Gilden, D. 2013c. Varicella zoster virus in the temporal artery of a patient with giant cell arteritis. J Neurol Sci, 335, 228–30.Google Scholar
Nagel, M. A., Russman, A. N., Feit, H., et al. 2013d. VZV ischemic optic neuropathy and subclinical temporal artery infection without rash. Neurology, 80, 220–2.Google Scholar
Nagel, M. A., Traktinskiy, I., Stenmark, K. R., et al. 2013e. Varicella-zoster virus vasculopathy: immune characteristics of virus-infected arteries. Neurology, 80, 62–8.Google Scholar
Nagel, M. A., Khmeleva, N., Choe, A., Gutierrez, J., and Gilden, D. 2014. Varicella zoster virus (VZV) in cerebral arteries of subjects at high risk for VZV reactivation. J Neurol Sci, 339, 32–4.Google Scholar
Nagel, M. A., White, T., Khmeleva, N., et al. 2015. Analysis of varicella-zoster virus in temporal arteries biopsy positive and negative for giant cell arteritis. JAMA Neurol, 72, 1281–7.Google Scholar
Okada, Y., and Nakanishi, I. 1989. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (‘gelatinase’) by human neutrophil elastase and cathepsin G. FEBS Lett, 249, 353–6.Google Scholar
Sabry, A., Hauk, P. J., Jing, H., et al. 2014. Vaccine strain varicella-zoster virus-induced central nervous system vasculopathy as the presenting feature of DOCK8 deficiency. J Allergy Clin Immunol, 133, 1225–7.Google Scholar
Salazar, R., Russman, A. N., Nagel, M. A., et al. 2011. Varicella zoster virus ischemic optic neuropathy and subclinical temporal artery involvement. Arch Neurol, 68, 517–20.Google Scholar
Siddiqi, S. A., Nishat, S., Kanwar, D., et al. 2012. Cerebral venous sinus thrombosis: Association with primary varicella zoster virus infection. J Stroke Cerebrovasc Dis, 21, 917–4.Google Scholar
Sreenivasan, N., Basit, S., Wohlfahrt, J., et al. 2013. The short- and long-term risk of stroke after herpes zoster: A nationwide population-based cohort study. PLoS One, 8, e69156.Google Scholar
Stenmark, K.R., Frid, M.G., Yeager, M., et al. 2012. Targeting the adventitial microenvironment in pulmonary hypertension: A potential approach to therapy that considers epigenetic change. Pulm Circ, 2, 314.Google Scholar
Stevens, D. A., Ferrington, R. A., Jordan, G. W., and Merigan, T. C. 1975. Cellular events in zoster vesicles: Relation to clinical course and immune parameters. J Infect Dis, 131, 509–15.CrossRefGoogle ScholarPubMed
Sundström, K., Weibull, C. E., Soderberg-Lofdal, K., et al. 2015. Incidence of herpes zoster and associated events including stroke: A population-based cohort study. BMC Infect Dis, 15, 488.Google Scholar
Weber, D. S., Taniyama, Y., Rocic, P., et al. 2004. Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circ Res, 94, 1219–26.Google Scholar
Yawn, B. P., Wollan, P. C., Nagel, M. A., and Gilden, D. 2016. Risk of stroke and myocardial infarction after herpes zoster in older adults in a US community population. Mayo Clin Proc, 91, 3344.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×