Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T01:11:36.689Z Has data issue: false hasContentIssue false

12 - Photonic Crystals

from Part III - Systems and Applications

Published online by Cambridge University Press:  05 December 2015

Olav Solgaard
Affiliation:
Stanford University, USA
Xuan Wu
Affiliation:
Stanford University, USA
Hans Zappe
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Claudia Duppé
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Get access

Summary

Introduction

Electronics and photonics share many attributes. In particular, both these areas of technology deal with information, so their size is not determined by some physical quantity that has to be received, stored, manipulated, and transmitted. Both electronics and photonics can therefore potentially benefit from miniaturization, which leads to lower cost of production, transportation, installation, and maintenance. In comparison to electronics, however, photonic devices are significantly more challenging to miniaturize. The reason is that photons, being bosons, interact only weakly with matter and are therefore difficult to store and manipulate. Even optical detectors require relatively large volumes to effectively absorb light, and larger still are other types of photonic devices that change some aspect of the photons without absorbing them.

One way to ameliorate this situation is to use coherence to increase the interaction between photons and matter. Photonic crystals, with their periodic variations in the dielectric constant, do exactly that. In a photonic crystal, relatively weak reflections or scattering from a periodic array add in-phase to create strong reflections, which in turn can set up optical resonances, or modes, in the photonic crystal. It follows that the functional output of a photonic crystal device relies on interference between the incoming field, the coherent reflections, and the resonant modes.

This qualitative description points to the usefulness of photonic crystals in miniaturized and tunable devices. By enhancing photon-matter interaction, photonic crystals enable optical functions to be performed in smaller volumes than devices that rely on traditional optical principles. This is true across the spectrum of optical devices, including lenses, mirrors, detectors, waveguides, modulators, resonators, and lasers. In fact there are very few, if any, optical functions that cannot be implemented and miniaturized through the aid of photonic crystals.

In addition, photonic crystals offer a number of mechanisms for tuning:

  1. The refractive index of the crystal lattice and/or the unit cells can be changed by the plasma effect, the thermo-optic effect, or by the electro-optic effect.

  2. The refractive index of the medium surrounding the photonic crystal can be tuned through the same effects or by immersing the photonic crystal in a liquid crystal or other tunable medium.

  3. The boundary conditions of the photonic crystal can be altered to tune its properties.

  4. The structure of the photonic crystal itself, its lattice or its unit cells, can be mechanically stressed or displaced.

Type
Chapter
Information
Tunable Micro-optics , pp. 293 - 318
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akkaya, O. C., Digonnet, M. J. F., Kino, G. S. & Solgaard, O. (2013), ‘Time-division-multiplexed interferometric sensor arrays’, Journal of Lightwave Technology 31(16), 2701–2708.CrossRefGoogle Scholar
Akkaya, O. C., Kilic, O., Digonnet, M. J. F., Kino, G. S. & Solgaard, O. (2012), ‘Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors’, Journal of Microelectromechanical Systems 21(6), 1347–1356.CrossRefGoogle Scholar
Almeida, V. R., Xu, Q. & Lipson, M. (2005), ‘Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect’, Optics Letters 30(18), 2403–2405.CrossRefGoogle ScholarPubMed
Basu Mallick, S., Jung, I. W., Meisner, A. M., Provine, J., Howe, R. T. & Solgaard, O. (2011), ‘Multilayered monolithic silicon photonic crystals’, IEEE Photonics Technology Letters 23(11), 730–732.Google Scholar
Bermel, P. (2013), ‘Full 3d bandgaps’, University Lecture.Google Scholar
Biegelsen, D. (1974), ‘Photoelastic tensor of silicon and the volume dependence of the average gap’, Physical Review Letters 32(21), 1196–1199.CrossRefGoogle Scholar
Brimont, A., Thomson, D. J., Sanchis, P., Herrera, J., Gardes, F. Y., Fedeli, J. M., Reed, G. T. & Martí, J. (2011), ‘High speed silicon electro-optical modulators enhanced via slow light propagation’, Optics Express 19(21), 20876–20885.CrossRefGoogle ScholarPubMed
Chong, H. M. H. & De La Rue, R. M. (2004), ‘Tuning of photonic crystal waveguide microcavity by thermooptic effect’, IEEE Photonics Technology Letters 16(6), 1528–1530.CrossRefGoogle Scholar
Chow, W. W., Choquette, K. D., Crawford, M. H., Lear, K. L. & Hadley, G. R. (1997), ‘Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers’, IEEE Journal of Quantum Electronics 33(10), 1810–1824.CrossRefGoogle Scholar
Coles, H. & Morris, S. (2010), ‘Liquid-crystal lasers’, Nature Photonics 4(10), 676–685.CrossRefGoogle Scholar
Crozier, K., Lousse, V., Kilic, O., Kim, S., Fan, S. & Solgaard, O. (2006), ‘Air-bridged photonic crystal slabs at visible and near-infrared wavelengths’, Physical Review B 73(11), 115126-1 to 115126-14.CrossRefGoogle Scholar
Ellis, B., Sarmiento, T., Mayer, M., Zhang, B., Harris, J., Haller, E. & Vučković, J. (2010), ‘Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction’, Applied Physics Letters 96(18), 181103–181103.CrossRefGoogle Scholar
Fischer, U., Zinke, T., Schüppert, B. & Petermann, K. (1994), ‘Singlemode optical switches based on SOI waveguides with large cross-section’, Electronics Letters 30(5), 406–408.CrossRefGoogle Scholar
Gan, X., Shiue, R.-J., Gao, Y., Mak, K. F., Yao, X., Li, L., Szep, A., Walker, Jr, D., Hone, J., Heinz, T. F. & Englund, D. (2013), ‘High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene’, Nano Letters 13(2), 691–696.CrossRefGoogle ScholarPubMed
Gersen, H., Karle, T. J., Engelen, R., Bogaerts, W., Korterik, J. P., Van Hulst, N. F., Krauss, T. F. & Kuipers, L. (2005), ‘Real-space observation of ultraslow light in photonic crystal waveguides’, Physical Review Letters 94(7), 073903.CrossRefGoogle ScholarPubMed
Goldberg, L. & Schnur, J. (1973), ‘Tunable internal-feedback liquid crystal-dye laser’, US Patent US 3771065 A, Publication date Nov. 6, 1973, Filing date Aug. 9, 1972.
Gong, Y., Ellis, B., Shambat, G., Sarmiento, T., Harris, J. S. & Vučković, J. (2010), ‘Nanobeam photonic crystal cavity quantum dot laser’, Optics Express 18(9), 8781.CrossRefGoogle ScholarPubMed
Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. (2007), ‘Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator’, Optics Express 15(25), 17106–17113.CrossRefGoogle Scholar
Grepstad, J. O., Greve, M. M., Holst, B., Johansen, I.-R., Solgaard, O. & Sudbø, A. (2013), ‘Finite-size limitations on quality factor of guided resonance modes in 2-D photonic crystals’, Optics Express 21(20), 23640–23654.CrossRefGoogle Scholar
Hadzialic, S., Kim, S., Sarioglu, A. F., Sudbø, A. S. & Solgaard, O. (2010a), ‘Displacement sensing with a mechanically tunable photonic crystal’, IEEE Photonics Technology Letters 22(16), 1196–1198.CrossRefGoogle Scholar
Hadzialic, S., Kim, S., Sudbø, A. & Solgaard, O. (2010b), ‘Two-dimensional photonic crystals fabricated in monolithic single-crystal silicon’, IEEE Photonics Technology Letters 22(2), 67–69.CrossRefGoogle Scholar
Ilchishin, I. P., Tikhonov, E. A., Tishchenko, V. G. & Shpak, M. T. (1980), ‘Generation of a tunable radiation by impurity cholesteric liquid crystals’, Journal of Experimental and Theoretical Physics Letters 32, 24.Google Scholar
Jeong, J.-W., Park, B., Keum, H., Kim, S., Rogers, J. A. & Solgaard, O. (2013), ‘Two-axis MEMS scanner with transfer-printed high-reflectivity, broadband monolithic silicon photonic crystal mirrors’, Optics Express 21(11), 13800–13809.CrossRefGoogle ScholarPubMed
Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. (2008), Photonic Crystals: Molding the Flow of Light (Second Edition), Princeton University Press.Google Scholar
Johnson, S. G. & Joannopoulos, J. D. (2000), ‘Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap’, Applied Physics Letters 77(22), 3490–3492.CrossRefGoogle Scholar
Jung, I. W., Kim, S. & Solgaard, O. (2009a), ‘High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization’, Journal of Microelectromechanical Systems 18(4), 924–932.Google Scholar
Jung, I. W., Mallick, S. & Solgaard, O. (2009b), ‘A large-area high-reflectivity broadband monolithic single-crystal-silicon photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization’, IEEE Journal of Selected Topics in Quantum Electronics 15(5), 1447–1454.Google Scholar
Jung, I.W., Park, B., Provine, J., Howe, R. T. & Solgaard, O. (2011), ‘Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature’, Journal of Lightwave Technology 29(9), 1367–1374.CrossRefGoogle Scholar
Kilic, O., Digonnet, M. J. F., Kino, G. S. & Solgaard, O. (2011), ‘Miniature photonic-crystal hydrophone optimized for ocean acoustics’, The Journal of the Acoustical Society of America 129(4), 1837–1850.CrossRefGoogle ScholarPubMed
Kilic, O., Digonnet, M., Kino, G. & Solgaard, O. (2007), ‘External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror’, Measurement Science and Technology 18(10), 3049–3054.CrossRefGoogle Scholar
Kilic, O., Digonnet, M., Kino, G. & Solgaard, O. (2008), ‘Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry’, Optics Express 16(17), 13090–13103.CrossRefGoogle ScholarPubMed
Kilic, O., Kim, S., Suh, W., Peter, Y.-A., Sudbø, A. S., Yanik, M. F., Fan, S. & Solgaard, O. (2004), ‘Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders’, Optics Letters 29(23), 2782–2784.CrossRefGoogle ScholarPubMed
Kim, S., Kant, R., Hadzialic, S., Howe, R. T. & Solgaard, O. (2008), ‘Interface quality control of monolithic photonic crystals by hydrogen annealing’, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paperCFY5.
Koray Erdamar, A., van Leest, M. M., Picken, S. J. & Caro, J. (2011), ‘Tuning of a cavity in a silicon photonic crystal by thermal expansion of an elastomeric infill’, Applied Physics Letters 99(11), 111113-1 to 111113-3.CrossRefGoogle Scholar
Kuramochi, E., Notomi, M., Tanabe, T., Mitsugi, S., Shinya, A. & Taniyama, H. (2006), ‘Photonic crystal resonant tunneling filters using ultrahigh-Q locally-width-modulated line-defect cavity’, in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference, CLEO/QELS 2006, pp. 1–2.Google Scholar
Lee, M. R. & Fauchet, P. M. (2007), ‘Two-dimensional photonic crystal microcavity sensor for single particle detection’, in 4th IEEE International Conference on Group IV Photonics, 2007, pp. 1–3.Google ScholarPubMed
Leonard, S., Mondia, J., van Driel, H., Toader, O., John, S., Busch, K., Birner, A., Gösele, U. & Lehmann, V. (2000), ‘Tunable two-dimensional photonic crystals using liquid crystal infiltration’, Physical Review B 61(4), R2389–R2392.CrossRefGoogle Scholar
Liao, L., Liu, A., Rubin, D., Basak, J., Chetrit, Y., Nguyen, H., Cohen, R., Izhaky, N. & Paniccia, M. (2007), ‘40 Gbit/s silicon optical modulator for highspeed applications’, Electronics Letters 43(22), 1196.CrossRefGoogle Scholar
Lin, S. Y., Fleming, J. G., Hetherington, D. L., Smith, B. K., Biswas, R., Ho, K. M., Sigalas, M. M., Zubrzycki, W., Kurtz, S. R. & Bur, J. (1998), ‘A three-dimensional photonic crystal operating at infrared wavelengths : Abstract : Nature’, Nature 394(6690), 251–253.CrossRefGoogle Scholar
Lockwood, D. J. & Pavesi, L. (2010), Silicon Photonics II: Components and Integration, Topics in Applied Physics, Springer, Berlin, Germany.Google Scholar
Loncar, M., Scherer, A. & Qiu, Y. (2003), ‘Photonic crystal laser sources for chemical detection’, Applied Physics Letters 82(26), 4648–4650.CrossRefGoogle Scholar
Lu, H., Sadani, B., Courjal, N., Ulliac, G., Smith, N., Stenger, V., Collet, M., Baida, F. I. & Bernal, M.-P. (2012), ‘Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film’, Optics Express 20(3), 2974–2981.
Maune, B., Loncar, M., Witzens, J., Hochberg, M., Baehr-Jones, T., Psaltis, D., Scherer, A. & Qiu, Y. (2004), ‘Liquid-crystal electric tuning of a photonic crystal laser’, Applied Physics Letters 85(3), 360–362.CrossRefGoogle Scholar
McGuinness, C., Byer, R. L., Colby, E., Cowan, B. M., England, R. J., Noble, R. J., Plettner, T., Sears, C. M., Siemann, R. & Spencer, J. (2008), ‘Woodpile structure fabrication for photonic crystal laser acceleration’, Thirteenth Advanced Accelerator Concepts, Santa Cruz, CA pp. 544–549.Google Scholar
Okada, Y. & Tokumaru, Y. (1984), ‘Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K’, Journal of Applied Physics, 56, 314–320.CrossRefGoogle Scholar
Ozaki, M., Kasano, M., Kitasho, T., Ganzke, D., Haase, W. & Yoshino, K. (2003), ‘Electro-tunable liquid-crystal laser’, Advanced Materials 15(12), 974–977.CrossRefGoogle Scholar
Qasymeh, M., Cada, M. & Ponomarenko, S. A.(2008), ‘Quadratic electro-optic Kerr effect: applications to photonic devices’, IEEE Journal of Quantum Electronics 44(8), 740–746.CrossRefGoogle Scholar
Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. (2010), ‘Silicon optical modulators’, Nature Photonics 4(8), 518–526.Google Scholar
Roussey, M., Bernal, M.-P., Courjal, N., Van Labeke, D., Baida, F. I. & Salut, R. (2006), ‘Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons’, Applied Physics Letters 89(24), 241110–241110.CrossRefGoogle Scholar
Scullion, M. G., Di Falco, A. & Krauss, T. F. (2011), ‘Slotted photonic crystal cavities with integrated microfluidics for biosensing applications’, Biosensors and Bioelectronics 27(1), 101–105.CrossRefGoogle ScholarPubMed
Shambat, G., Ellis, B., Majumdar, A., Petykiewicz, J., Mayer, M. A., Sarmiento, T., Harris, J., Haller, E. E. & Vučković, J. (2011), ‘Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode’, Nature Communications 2, 539.CrossRefGoogle ScholarPubMed
Shambat, G., Kothapalli, S.-R., Provine, J., Sarmiento, T., Harris, J., Gambhir, S. S. & Vučković, J. (2013), ‘Single-cell photonic nanocavity probes’, Nano Letters 13(11), 4999–5005.CrossRefGoogle ScholarPubMed
Soljačić, M., Johnson, S. G., Fan, S., Ibanescu, M., Ippen, E. & Joannopoulos, J. D. (2002), ‘Photonic-crystal slow-light enhancement of nonlinear phase sensitivity’, Journal of the Optical Society of America B 19(9), 2052–2059.CrossRefGoogle Scholar
Soref, R. A. & Bennett, B. R. (1987), ‘Electrooptical effects in silicon’, IEEE Journal of Quantum Electronics 23(1), 123–129.CrossRefGoogle Scholar
Stöber, W., Fink, A. & Bohn, E. (1968), ‘Controlled growth of monodisperse silica spheres in the micron size range’, Journal of Colloid and Interface Science 26(1), 62–69.CrossRefGoogle Scholar
Suh, W., Solgaard, O. & Fan, S. (2005), ‘Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs’, Journal of Applied Physics 98(3), 033102.CrossRefGoogle Scholar
Suh, W., Yanik, M. F., Solgaard, O. & Fan, S. (2003), ‘Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs’, Applied Physics Letters 82(13), 1999.CrossRefGoogle Scholar
Woltman, S. J. & Crawford, G. P. (2007), ‘Tunable cholesteric liquid crystals lasers through in-plane switching’, in L.-C. Chien, ed., Integrated Optoelectronic Devices 2007, SPIE, pp. 64870B–64870B–9.
Wu, X. (2013), Multimode optical fiber-tip photonic crystal pressure sensors: toward low-cost, high-precision optical sensing, PhD thesis, Stanford University.
Wu, X., Jan, C. & Solgaard, O. (2013), ‘Monolithic photonic crystal-based fiber-tip Fabry-Pérot static pressure sensor’, in 2013 International Conference on Optical MEMS and Nanophotonics (OMN Aug.), 18–22, 2013, pp. 49–50.Google Scholar
Wu, X., Jan, C. & Solgaard, O. (2015), ‘Single-crystal silicon photonic-crystal fiber-tip pressure sensors’, IEEE Journal of Microelectromechanical Systems, 24(4), 968–975.CrossRefGoogle Scholar
Wu, X. & Solgaard, O. (2013), ‘Short-cavity multimode fiber-tip Fabry-Pérot sensors’, Optics Express 21(12), 14487.CrossRefGoogle ScholarPubMed
Yablonovitch, E., Gmitter, T. & Leung, K. (1991), ‘Photonic band structure: the face-centered-cubic case employing nonspherical atoms’, Physical Review Letters 67(17), 2295–2298.CrossRefGoogle ScholarPubMed
Zhang, Y., Khan, M., Huang, Y., Ryou, J., Deotare, P., Dupuis, R. & Loncar, M. (2010), ‘Photonic crystal nanobeam lasers’, Applied Physics Letters 97(5), 051104–051104.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Photonic Crystals
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Photonic Crystals
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Photonic Crystals
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.012
Available formats
×