Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T08:35:02.414Z Has data issue: false hasContentIssue false

1 - Global Warming and Forests in the Anthropocene

Published online by Cambridge University Press:  22 June 2020

William J. Manning
Affiliation:
University of Massachusetts, Amherst
Get access

Summary

There is considerable interest and concern about global warming and climate change. In response, there is also great interest in the role that tree planting and new forests might play in partial mitigation of global warming and in reducing climate change by cooling the atmosphere now and especially in the future, as carbon dioxide increases. This interest is evident in the very large number of reports and conclusions in widely diverse scientific journals, books, and the popular media. The purpose of this book is to bring together in one place a review of background information and results from sources, primarily reports in scientific journals, about global warming and the role of forests in cooling and warming the atmosphere now and in future projections.

Type
Chapter
Information
Trees and Global Warming
The Role of Forests in Cooling and Warming the Atmosphere
, pp. 1 - 19
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta-Navarro, J. C., Varma, V., Seland, O. et al. 2016. Amplification of Arctic warming by past air pollution reduction in Europe. Nature Geoscience doi: 10.1038/NGEO2673.Google Scholar
Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A. et al. 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change type drought. Proceedings of the National Academy of Sciences USA 106: 70637066. www.pnas.org/cgi/doi/10.1073/pnas.0901438106.Google Scholar
Ahrends, A., Hollingsworth, P. M., Beckschafer, P. et al. 2017. China’s fight to halt tree cover loss. Proceedings of the Royal Society B 284: 20162559. doi: 10.1098/rspb.2016.2559.Google Scholar
Allen, C. D., Breshears, D. D. and McDowell, N. G. 2015. On underestimation of global vulnerability to tree mortality and forest dieoff from hotter drought in the Anthropocene. Ecosphere 6: 129. doi: 10.1890/ES15=00203.13.x.CrossRefGoogle Scholar
Anderegg, W. R. L., Hicke, J. A., Fisher, R. A. et al. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208: 674683. doi: 10.1111/nph.13477.CrossRefGoogle Scholar
Archer, D., Eby, M., Brovkin, V. et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review Earth and Planetary Science 37: 117134. doi: 10.1146/annurev.earth.031208.10020.Google Scholar
Arneth, A., Sitch, S., Pongratz, J. et al. 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience 10, 7984. doi: 10.1038/NGEO2882.Google Scholar
Baccini, A., Walker, W., Carvalho, L. et al. 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230234. doi: 10.1126/scienceaam5962.Google Scholar
Bala, G., Caldeira, K., Wickett, M. et al. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0608998104.CrossRefGoogle Scholar
Ban-Weiss, G. A., Bala, G., Cao, L., Pongratz, J. and Caldeira, K. 2011. Climate forcing and response to idealized changes in surface latent and sensible heat. Environmental Research Letters 6: 034032.Google Scholar
Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F. and Kennedy, J. F. 2016. El Nino and a record CO2 rise. Nature Climate Change 6: 806810.Google Scholar
Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 14441449.Google Scholar
Borenstein, S. and Forster, N. 2018. Warned 30 years ago, global warming is in our living room. 18 June 2018. www.apnews.com/30yearsofwarming.Google Scholar
Brändlin, A.-S. 2017. How climate change is increasing forest fires around the world. Deutsche Welle. www.dw.com/en/how-climate-change-is-increasing-forest-fires-around-the-world/a-19465490.Google Scholar
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R. et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519: 344348. doi: 10.1038/nature14283.Google Scholar
Cao, L. Bala, G., Caldiera, K., Nemani, R. and Ban-Weiss, G. A. 2010. Importance of carbon dioxide physiological forcing to future climate change. Proceedings of the National Academy of Sciences 107: 95139518 doi: 10.1073/pnas.0913000107.Google Scholar
Churkina, G. 2016. The role of urbanization in the global carbon cycle. Frontiers in Ecology and Evolution 3: 144. doi: 10.3389/fevo.2015.00144.Google Scholar
Cook, J., Oreske, N., Doran, P. T. et al. 2016. Consensus on consensus estimates on human-caused global warming. Environmental Research Letters 11: 048002.Google Scholar
Crowther, T. W., Glick, H. B. and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature 525: 201205 doi: 10.1038/nature14967.Google Scholar
Crutzen, P. J. and Stoermer, E. F. 2000. The “Anthropocene”. Global Change Newsletter 41: 1718.Google Scholar
Fernandez-Martinez, S., Vicca, I. A., Janessens, J. et al. 2015. Nutrient availability as the key regulator of global carbon balance. Nature Climate Change 4: 471478. doi: 10.1038/nclimate2177.Google Scholar
Friedman, T. L. 2016. Thank You for Being Late: An Optimist’s Guide to Thriving in the Age of Acceleration, Chapter 1. New York: Farrar, Strous and Giroux.Google Scholar
Gibbard, S., Caldeira, K., Bala, G., Phillips, T.J. and Wickett, M. 2005. Climate effects of global land cover change. Geophysical Research Letters 32: L23705. doi: 10.1029/2005GL0245550.2005.Google Scholar
Goodwin, P., Williams, R. G. and Ridgwell, A. 2015. Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nature Geoscience 8: 2934. doi: 10.1038/NGEO2304.CrossRefGoogle Scholar
Graven, H. D., Keeling, R. F., Piper, S. C. et al. 2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341: 10851089.Google Scholar
Groenendijk, P., van der Sleen, P., Vlam, V., Bunyavejchewin, S. and Zuidema, P. A. 2015. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis. Global Change Biology 21: 27622766. doi: 10.1111/gcb.12955.Google Scholar
Grotta, A. 2015. Plantation forests and climate change. https://articles.extension.org/pages/73233/plantation-forests-and-climate-change (accessed 05/06/2018).Google Scholar
Hansen, J. E. 1988. The Greenhouse Effect: impacts on current global temperature and regional heat waves. Testimony before the US Senate, 23 June 1988. https://climatechange.procon.org/sourcefiles/1988_Hansen_Senate_testimony.pdf (accessed 09/06/2018).Google Scholar
Hansen, J., Nazarenko, L., Reudy, R. et al. 2005. Earth’s energy imbalance: confirmation and implications. Science 308: 14311435. doi: 10.1126/science.1110252.Google Scholar
Harari, Y. N. 2015. Sapiens: A Brief History of Humankind. New York: Harper Collins.Google Scholar
Hua, F., Wang, X., Zheng, X. et al. 2016. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nature Communications 6 doi: 10.1038/ncomms12717.Google Scholar
Huntingford, C. and Mercado, W. 2016. High changes that current atmospheric greenhouse concentrations commit to warmings greater than 1.5?C over land. Scientific Reports 6: article 30294. DOI: 10.1038/svep30294.Google Scholar
Inman, M. 2008. Carbon is forever. Nature Reports 2: 156157.Google Scholar
Jasechko, S., Sharp, Z. D., Gibson, J. L. et al. 2013. Terrestrial water fluxes dominated by transpiration. Nature 496: 347350 doi: 10.1038/nature11983.Google Scholar
Jiang, Z. and Zheng, S. Y. 2003. China’s plantation for sustainable wood supply and development. www.fao.org/docrep/ARTICLE/WFC/XII/09555-B4.htm (accessed 22/07/2108).Google Scholar
Keeling, C. D., Chin, J. F. S. and Whorf, T. P. 1996. Increased activity of northern vegetation inferred from atmosphere CO2 measurements. Nature 382: 146.Google Scholar
Kennedy, J. Dunn, R., McCarthy, M., Tichner, H. and Morice, C. 2017. Global and regional climate in 2016. Weather 72: 219 doi: 10.1002/wea.3042.Google Scholar
King, A. D. 2017. Attributing changing rates of temperature record breaking to anthropogenic influences. Earth’s Future 5: 11561168. doi: 10.1002/2017EF000611.Google Scholar
King, J. S., Kubiske, M. E., Pregitzer, K. S. et al. 2005. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. The New Phytologist 168: 623636.Google Scholar
Kirschbaum, M. U. F. and McMillan, A. M. S. 2018. Warming and elevated CO2 have opposing influences on transpiration. Which is more important? Current Forestry Reports 4: 5171.Google Scholar
Leggett, L. M. W. and Ball, D. A. 2018. Granger causality form changes in level of atmospheric CO2 to global surface temperature and the El Nino-Southern Oscillation, and a candidate mechanism in global photosynthesis. Atmospheric Chemistry and Physics 15: 1157111592 doi: 10.5194/acp-15-11571-2015.Google Scholar
Li, P., De Marco, A., Feng, Z. et al. 2017. Nationwide ground-level ozone measurements in China suggest serious risks to forests. Environmental Pollution doi: 10.1016/j.envpol.2107.11.002.Google Scholar
Li, Y., Zhao, M., Motesharrei, S. et al. 2015. Local cooling and warming effects on forests based on satellite observations. Nature Communications 31 March. doi: 10.1038/ncomm7603.Google Scholar
Long, S. P. 2012. Editorial for Virtual Special Issue on mechanisms of plant response to global atmospheric change. Plant, Cell and Environment 35: 17051706. doi: 10.1111/j.1365-3040.2012.12589.x.CrossRefGoogle ScholarPubMed
Mann, M., Rahmstorf, S., Steinman, B. A., Tingley, M. and Miller, S. K. 2016. The likelihood of recent record warmth. Scientific Reports 6: 19831 doi: 10.103/srep19831.Google Scholar
Mann, M., Miller, S. K., Rahmstorf, S., Steinman, B. A. and Tingley, M. 2017. Record temperature streak bears anthropogenic fingerprint. Geophysical Research Letters doi: 10.10002/2017GL074056.Google Scholar
Mao, J., Ribes, A., Yan, B. et al. 2016. Human-induced greening of the northern extratropical land surface. Nature Climate Change doi: 10.1038/NCLIMATE3056.Google Scholar
Margulis, L. and Lovelock, J. E. 1974. Biological modulation of the Earth’s atmosphere. Icarus 21(4): 471489. https://doi.org/10.1016/0019-1035(74)90150-X.CrossRefGoogle Scholar
Mercado, L. M., Bellouin, N., Stich, S. et al. 2009. Impact of changes in diffuse radiation on the land carbon sink. Nature 458: 10141017. doi: 10.1038/nature07949.Google Scholar
NASA, 2018. The consequences of climate change. https://climate.nasa.gov/effects/ (accessed 06/12/2018).Google Scholar
Rafferty, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. and Liu, P. 2017. Less than 2 °C warming by 2100 unlikely. Nature Climate Change doi: 10.1038/NCLIMATE3352.Google Scholar
Schlesinger, W. H. 2018. Are wood pellets a green fuel? Science 359: 13281329.Google Scholar
Sedano, F. Silva, Machoco, R., Meque, C.H. et al. 2016. The impact of charcoal production on forest degradation: a case study in Tete, Mozambique. Environmental Research Letters 11: 094020 doi: 10.1088/1748-9326/11/9094020.Google Scholar
Soloman, S., Plattner, G. P., Knutti, R. and Friedlingstein, P. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences 106: 17041709.CrossRefGoogle Scholar
Spracklen, D. V., Bonn, B. and Carslaw, R. S. 2008. Boreal forests, aerosols and the impact on clouds and climate. Philosophical Transactions of the Royal Society A 366: 46134626.Google Scholar
Steffen, W., Persson, A., Deutsch, L. et al. 2011. The Anthropocene: from global change to planetary stewardship. Ambio 40: 739761. doi: 10.1007/s13280-011-0185-x.Google Scholar
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. and Ludfwig, C. 2015. The trajectory of the Anthropocene: the great acceleration. The Antropocene Review 2: 8198. doi: 10.1177/2053019614564785.Google Scholar
Stralberg, D., Wang, X., Pariesien, M.-A. et al. 2018. Wildfire-mediated vegetation change in boreal forests of Alberta, Canada. Ecosphere. doi: 10.1002/ecs2.2156.Google Scholar
Sun, Y., Frankenerg, C., Wood, J. D. et al. 2017. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358: eaam5747. doi: 10.1126/science.aam5747.Google Scholar
The Bonn Challenge. 2011. www.bonnchallenge.org.Google Scholar
The Economist 2018. A tale of 19 mega-cities. The Economist 23 June pp. 41–42.Google Scholar
Unger, N. 2012. New directions: enduring ozone. Atmospheric Environment 55: 456458. doi: 10.1016/j.atmosenv.2012.03.036.Google Scholar
Unger, N. 2014. Human land-use-driven reduction of forest volatiles cools global climate. Nature Climate Change doi: 10.1038/NCLIMATE2347.Google Scholar
United Nations REDD+ Program. http://www.unredd.net/about/what-is-redd-plus.html (accessed on 13/06/2018).Google Scholar
van der Sleen, P., Groenendijk, P., Vlam, M. et al. 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water use efficiency increased. Nature Geoscience 8: doi: 10.1038/ngeo2313.Google Scholar
van der Werf, G. R., Morton, D. C., DeFries, R. S. et al. 2009. CO2 emissions from forest loss. Nature Geoscience 2: 737738.Google Scholar
Waters, C. N., Zalasiewwicz, J., Summerhayes, C. et al. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 361: 137. doi: 10.1126/science.add2622.Google Scholar
Way, D. A., Oren, R. and Kroner, Y. 2015. The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. Plant, Cell and Environment 38: 9911007. doi: 10.1111/pce.12527.Google Scholar
Wieder, W. R., Cleveland, C. C., Kolby Smith, W. and Todd-Brown, K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience 8: 441444 June doi: 10.1038/NGEO2413.Google Scholar
Wild, M., Ohmura, A. and Makowski, K. 2007. Impact of global dimming and brightening on global warming. Geophysical Research Letters 34: doi: 10.1029/2006GL028031.Google Scholar
Zalasiewicz, J., Williams, M., Steffen, W. and Crutzen, P. 2010. The Anthropocene. Environmental Science and Technology 44: 22282231. doi: 10.1021/es903118j.Google Scholar
Zeng, Z., Piao, S., Laurent, Z. X. et al. 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change doi: 10.1038/NCLIMATE3299.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×