Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-25T18:38:22.573Z Has data issue: false hasContentIssue false

5 - TREATMENT OF RELAPSED AND RELAPSED/REFRACTORY MULTIPLE MYELOMA

Published online by Cambridge University Press:  11 July 2009

S. Vincent Rajkumar
Affiliation:
Mayo Clinic, Minnesota
Robert A. Kyle
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

INTRODUCTION

Despite recent advances in therapy, relapsed and refractory multiple myeloma (MM) remains a significant challenge and an area of unmet medical need. Median survival and responses to treatment are characteristically short. Relapsed and refractory MM is defined as patients who achieve at least a minor response (MR) or better followed by relapse and then progress on salvage therapy, or experience progression within 60 days of their last therapy. Successive treatment regimens typically result in progressively shorter response durations, which reflects emerging drug resistance. The observed decrease in response duration may also reflect changes in disease biology within each patient, with tumor cells expressing a more aggressive phenotype, higher proliferative thrust, and lower apoptotic rates.

Although several prognostic factors have been identified for newly diagnosed myeloma, factors that retain prognostic value in the context of relapsed/refractory disease remain to be comprehensively defined. Nonetheless, patients with poor risk include those with t(4;14) or t(14;16), deletion 17 or deletion 13, hypodiploidy, high- β2-microglobulin, light-chain disease, immunoglobulin A (IgA) isotype, and low serum albumin; clinical challenges in the relapsed/refractory population include renal failure, extramedullary disease, hyposecretory myeloma, and advanced bone disease.

The advent of novel therapies targeting disease biology and tumor microenvironment has significantly improved the prognosis for patients with relapsed and refractory disease. Bortezomib, a first-in-class proteasome inhibitor, and the immunomodulatory agents thalidomide (Thal) and lenalidomide now constitute “backbone” agents in this setting.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, KC, Kyle, RA, Rajkumar, SV, Stewart, AK, Weber, D, Richardson, P.Clinically relevant end points and new drug approvals for myeloma. Leukemia 2008;22(2):231–9.CrossRefGoogle ScholarPubMed
Alexanian, R, Barlogie, B, Dixon, D.High-dose glucocorticoid treatment of resistant myeloma. Ann Intern Med 1986;105(1):8–11.CrossRefGoogle ScholarPubMed
Barlogie, B, Smith L, Alexanian R.Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med 1984;310(21):1353–6.CrossRefGoogle ScholarPubMed
Anderson, H, Scarffe, JH, Ranson, M, et al. VAD chemotherapy as remission induction for multiple myeloma. Br J Cancer 1995;71(2):326–30.CrossRefGoogle ScholarPubMed
Gertz, MA, Kalish, , Kyle, RA, Hahn, RG, Tormey, DC, Oken, MM.Phase III study comparing vincristine, doxorubicin (Adriamycin), and dexamethasone (VAD) chemotherapy with VAD plus recombinant interferon alfa-2 in refractory or relapsed multiple myeloma. An Eastern Cooperative Oncology Group study. Am J Clin Oncol 1995;18(6):475–80.Google ScholarPubMed
Lokhorst, HM, Meuwissen, OJ, Bast, EJ, Dekker, AW.VAD chemotherapy for refractory multiple myeloma. Br J Haematol 1989;71(1):25–30.CrossRefGoogle ScholarPubMed
Durie, BG, Dixon, , Carter, S, et al. Improved survival duration with combination chemotherapy induction for multiple myeloma: a Southwest Oncology Group Study. J Clin Oncol 1986;4(8):1227–37.CrossRefGoogle ScholarPubMed
Giles, FJ, Wickham, NR, Rapoport, BL, et al. Cyclophosphamide, etoposide, vincristine, adriamycin, and dexamethasone (CEVAD) regimen in refractory multiple myeloma: an International Oncology Study Group (IOSG) phase II protocol. Am J Hematol 2000;63(3):125–30.3.0.CO;2-S>CrossRefGoogle Scholar
Lee, CK, Barlogie, B, Munshi, N, et al. DTPACE: an effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma. J Clin Oncol 2003;21(14):2732–9.CrossRefGoogle ScholarPubMed
Maclennan, IC, Chapman, C, Dunn, J, Kelly, K.Combined chemotherapy with ABCM versus melphalan for treatment of myelomatosis. The Medical Research Council Working Party for Leukaemia in Adults. Lancet 1992;339(8787):200–5.CrossRefGoogle ScholarPubMed
Berenson, JR, Yang, HH, Sadler, K, et al. Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 2006;24(6):937–44.CrossRefGoogle ScholarPubMed
Orlowski, RZ, Voorhees, PM, Garcia, RA, et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2005;105(8):3058–65.CrossRefGoogle ScholarPubMed
Orlowski, RZ, Nagler, A, Sonneveld, P, et al. Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol 2007;25(25):3892–901.CrossRefGoogle ScholarPubMed
Barlogie, B, Alexanian, R, Dicke, KA, et al. High-dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood 1987;70(3):869–72.Google ScholarPubMed
Barlogie, B, Hall, R, Zander, A, Dicke, K, Alexanian, R.High-dose melphalan with autologous bone marrow transplantation for multiple myeloma. Blood 1986;67(5):1298–301.Google ScholarPubMed
Mcelwain, TJ, Powles, RL.High-dose intravenous melphalan for plasma-cell leukaemia and myeloma. Lancet 1983;2(8354):822–4.CrossRefGoogle ScholarPubMed
Alexanian, R, Dimopoulos, MA, Hester, J, Delasalle, K, Champlin, R.Early myeloablative therapy for multiple myeloma. Blood 1994;84(12):4278–82.Google ScholarPubMed
Kumar, S, Lacy, MQ, Dispenzieri, A, et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant 2004;34(2):161–7.CrossRefGoogle ScholarPubMed
Vesole, DH, Tricot, G, Jagannath, S, et al. Autotransplants in multiple myeloma: what have we learned? Blood 1996;88(3):838–47.Google ScholarPubMed
Vesole, DH, Crowley, JJ, Catchatourian, R, et al. High-dose melphalan with autotransplantation for refractory multiple myeloma: results of a Southwest Oncology Group phase II trial. J Clin Oncol 1999;17(7):2173–9.CrossRefGoogle ScholarPubMed
Lee, CK, Barlogie, B, Zangari, M, et al. Transplantation as salvage therapy for high-risk patients with myeloma in relapse. Bone Marrow Transplant 2002;30(12):873–8.CrossRefGoogle ScholarPubMed
Fermand, JP, Ravaud, P, Chevret, S, et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 1998;92(9):3131–6.Google ScholarPubMed
Corradini, P, Cavo, M, Lokhorst, H, et al. Molecular remission after myeloablative allogeneic stem cell transplantation predicts a better relapse-free survival in patients with multiple myeloma. Blood 2003;102(5):1927–9.CrossRefGoogle ScholarPubMed
Gahrton, G, Svensson, H, Cavo, M, et al. Progress in allogenic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: a comparison between transplants performed 1983–93 and 1994–8 at European Group for Blood and Marrow Transplantation centres. Br J Haematol 2001;113(1):209–16.CrossRefGoogle Scholar
Maloney, DG, Molina, AJ, Sahebi, F, et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003;102(9):3447–54.CrossRefGoogle ScholarPubMed
Kroger, N, Perez-Simon, JA, Myint, H, et al. Relapse to prior autograft and chronic graft-versus-host disease are the strongest prognostic factors for outcome of melphalan/fludarabine-based dose-reduced allogeneic stem cell transplantation in patients with multiple myeloma. Biol Blood Marrow Transplant 2004; 10(10):698–708.CrossRefGoogle ScholarPubMed
Georges, GE, Maris, MB, Maloney, DG, et al. Nonmyeloablative unrelated donor hematopoietic cell transplantation to treat patients with poor-risk, relapsed, or refractory multiple myeloma. Biol Blood Marrow Transplant 2007; 13(4):423–2.CrossRefGoogle ScholarPubMed
Gerull, S, Goerner, M, Benner, A, et al. Long-term outcome of nonmyeloablative allogeneic transplantation in patients with high-risk multiple myeloma. Bone Marrow Transplant 2005;36(11):963–9.CrossRefGoogle ScholarPubMed
D'Amato, RJ, Loughnan, MS, Flynn, E, Folkman, J.Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994;91(9):4082–5.CrossRefGoogle ScholarPubMed
Vacca, A, Ribatti, D, Roncali, L, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994;87(3):503–8.CrossRefGoogle ScholarPubMed
Anderson, KC.Lenalidomide and thalidomide: mechanisms of action – similarities and differences. Semin Hematol 2005;42 (4 suppl 4):S3-S8.CrossRefGoogle ScholarPubMed
Hideshima, T, Chauhan, D, Shima, Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000;96(9):2943–50.Google ScholarPubMed
Mitsiades, N, Mitsiades, CS, Poulaki, V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002;99(12):4525–30.CrossRefGoogle ScholarPubMed
Singhal, S, Mehta, J, Desikan, R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341(21):1565–71.CrossRefGoogle ScholarPubMed
Barlogie, B, Desikan, R, Eddlemon, P, et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001;98(2):492–4.CrossRefGoogle Scholar
Richardson, PG, Mitsiades, C, Schlossman, R, Munshi, N, Anderson, K.New drugs for myeloma. Oncologist 2007;12(6):664–89.CrossRefGoogle ScholarPubMed
Glasmacher, A, Hahn, C, Hoffmann, F, et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br J Haematol 2006;132(5):584–93.CrossRefGoogle ScholarPubMed
Neben, K, Moehler, T, Benner, A, et al. Dose-dependent effect of thalidomide on overall survival in relapsed multiple myeloma. Clin Cancer Res 2002;8(11):3377–82.Google ScholarPubMed
Schey, SA, Cavenagh, J, Johnson, R, Child, JA, Oakervee, H, Jones, RW.An UK myeloma forum phase II study of thalidomide; long term follow-up and recommendations for treatment. Leuk Res 2003;27(10):909–14.CrossRefGoogle Scholar
Richardson, P, Schlossman, R, Jagannath, S, et al. Thalidomide for patients with relapsed multiple myeloma after high-dose chemotherapy and stem cell transplantation: results of an open-label multicenter phase 2 study of efficacy, toxicity, and biological activity. Mayo Clin Proc 2004;79(7):875–82.CrossRefGoogle ScholarPubMed
Naina, Hvk, Lacy, MQ, Dispenzieri, A, et al. Incidence and clinical course of peripheral neuropathy in patients receiving thalidomide for the treatment of multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2005;106(11):3475.Google Scholar
Mileshkin, L, Stark, R, Day, B, Seymour, JF, Zeldis, JB, Prince, HM.Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol 2006;24(27):4507–14.CrossRefGoogle ScholarPubMed
Rajkumar, SV, Blood, E, Vesole, D, Fonseca, R, Greipp, PR.Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 2006;24(3):431–6.CrossRefGoogle ScholarPubMed
Weber, D, Rankin, K, Gavino, M, Delasalle, K, Alexanian, R.Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 2003;21(1):16–19.CrossRefGoogle ScholarPubMed
Glasmacher, A, Hahn, C, Hoffmann, F, et al. Thalidomide in relapsed or refractory patients with multiple myeloma: monotherapy or combination therapy? A report from systematic reviews. Blood (ASH Annual Meeting Abstracts) 2005;106(11):5125.Google Scholar
Alexanian, R, Weber, D, Anagnostopoulos, A, Delasalle, K, Wang, M, Rankin, K.Thalidomide with or without dexamethasone for refractory or relapsing multiple myeloma. Semin Hematol 2003;40(4 suppl 4):3–7.CrossRefGoogle ScholarPubMed
Dimopoulos, MA, Zervas, K, Kouvatseas, G, et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann Oncol 2001;12(7):991–5.CrossRefGoogle ScholarPubMed
Palumbo, A, Falco, P, Ambrosini, MT, et al. Thalidomide plus dexamethasone is an effective salvage regimen for myeloma patients relapsing after autologous transplant. Eur J Haematol 2005;75(5):391–5.CrossRefGoogle ScholarPubMed
Palumbo, A, Bertola, A, Falco, P, et al. Efficacy of low-dose thalidomide and dexamethasone as first salvage regimen in multiple myeloma. Hematol J 2004;5(4):318–24.CrossRefGoogle ScholarPubMed
Hussein, MA.Thromboembolism risk reduction in multiple myeloma patients treated with immunomodulatory drug combinations. Thromb Haemost 2006;95(6):924–30.Google ScholarPubMed
Palumbo, A, Rajkumar, SV, Dimopoulos, MA, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008;22:414–23.CrossRefGoogle Scholar
Moehler, TM, Neben, K, Benner, A, et al. Salvage therapy for multiple myeloma with thalidomide and CED chemotherapy. Blood 2001;98(13):3846–8.CrossRefGoogle ScholarPubMed
Offidani, M, Corvatta, L, Marconi, M, et al. Low-dose thalidomide with pegylated liposomal doxorubicin and high-dose dexamethasone for relapsed/refractory multiple myeloma: a prospective, multicenter, phase II study. Haematologica 2006;91(1):133–6.Google ScholarPubMed
Dimopoulos, MA, Hamilos, G, Zomas, A, et al. Pulsed cyclophosphamide, thalidomide and dexamethasone: an oral regimen for previously treated patients with multiple myeloma. Hematol J 2004;5(2):112–17.CrossRefGoogle ScholarPubMed
Kyriakou, C, Thomson, K, D'Sa, S, et al. Low-dose thalidomide in combination with oral weekly cyclophosphamide and pulsed dexamethasone is a well tolerated and effective regimen in patients with relapsed and refractory multiple myeloma. Br J Haematol 2005;129(6):763–70.CrossRefGoogle ScholarPubMed
Glasmacher, A, Moehler, T, Goldschmidt, H, et al. Multicenter phase II trial of patients with refractory or recurrent multiple myeloma with oral treatment of thalidomide combined with oral cyclophosphamide, idarubicin and dexamethasone. ASH Annual Meeting Abstracts 2007;110(11):4825.Google Scholar
Bartlett, JB, Dredge, K, Dalgleish, AG.The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 2004;4(4):314–22.CrossRefGoogle ScholarPubMed
Richardson, PG, Schlossman, RL, Weller, E, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002;100(9):3063–7.CrossRefGoogle ScholarPubMed
Zangari, M, Tricot, G, Zeldis, J, Eddlemon, P, Saghafifar, F, Barlogie, B.Results of Phase I study of CC-5013 for the treatment of multiple myeloma (MM) patients who relapse after high dose chemotherapy (HDCT). Blood (ASH Annual Meeting Abstracts) 2001;98(11),775a.Google Scholar
Zangari, M, Barlogie, B, Jacobson, J.Revlimid 25mg (REV 25) × 20 versus 50mg (REV 50) × 10 q28 days with bridging of 5mg × 10 versus 10mg × 5 as post-transplant salvage therapy for multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2003;102(11).Google Scholar
Richardson PG, Blood E, Mitsiades, CS, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006;108(10):3458–64.CrossRefGoogle ScholarPubMed
Weber, DM, Chen, C, Niesvizky, R, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007;357(21):2133–42.CrossRefGoogle ScholarPubMed
Dimopoulos, M, Spencer, A, Attal, M, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007;357(21):2123–32.CrossRefGoogle ScholarPubMed
Weber, D, Knight, R, Chen, C, et al. Prolonged overall survival with lenalidomide plus dexamethasone compared with dexamethasone alone in patients with relapsed or refractory multiple myeloma. ASH Annual Meeting Abstracts 2007;110(11):412.Google Scholar
Baz, R, Walker, E, Karam, MA, et al. Lenalidomide and pegylated liposomal doxorubicin-based chemotherapy for relapsed or refractory multiple myeloma: safety and efficacy. Ann Oncol 2006;17(12):1766–71.CrossRefGoogle ScholarPubMed
Knop, S, Gerecke, C, Liebisch, P, et al. The efficacy and toxicity of the RAD regimen (Revlimid®, Adriamycin®, dexamethasone) in relapsed and refractory multiple myeloma – a phase I/II trial of “Deutsche Studiengruppe multiples myelom”. Blood (ASH Annual Meeting Abstracts) 2007;110(11):2716.Google Scholar
Morgan, GJ, Schey, SA, Wu, P, et al. Lenalidomide (Revlimid), in combination with cyclophosphamide and dexamethasone (RCD), is an effective and tolerated regimen for myeloma patients. Br J Haematol 2007;137(3):268–9.CrossRefGoogle Scholar
Hideshima, T, Anderson, KC.Preclinical studies of novel targeted therapies. Hematol Oncol Clin North Am 2007;21(6):1071–91.CrossRefGoogle ScholarPubMed
Richardson, PG, Barlogie, B, Berenson, J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348(26):2609–17.CrossRefGoogle ScholarPubMed
Jagannath, S, Barlogie, B, Berenson, J, et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 2004;127(2):165–72.CrossRefGoogle ScholarPubMed
Jagannath, S, Barlogie, B, Berenson, JR, et al. Updated survival analyses after prolonged follow-up of the phase 2, multicenter CREST study of bortezomib in relapsed or refractory multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2007;110(11):2717.Google Scholar
Richardson, PG, Sonneveld, P, Schuster, MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352(24):2487–98.CrossRefGoogle ScholarPubMed
Richardson, PG, Sonneveld, P, Schuster, M.Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 2007;110(10):3557–60.CrossRefGoogle ScholarPubMed
Richardson, PG, Briemberg, H, Jagannath, S, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 2006;24(19):3113–20.CrossRefGoogle ScholarPubMed
Miguel, Jfs, Richardson, P, Sonneveld, P, et al. Frequency, characteristics, and reversibility of peripheral neuropathy (PN) in the APEX trial. Blood (ASH Annual Meeting Abstracts) 2005;106(11):366.Google Scholar
Lonial, S, Waller, EK, Richardson, PG, et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 2005;106(12):3777–84.CrossRefGoogle ScholarPubMed
Lonial, S, Richardson, P, Sonneveld, P, et al. Hematologic profiles in the phase 3 APEX trial. ASH Annual Meeting Abstracts 2005;106(11):3474.Google Scholar
Mitsiades, N, Mitsiades, CS, Richardson, PG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003;101(6):2377–80.CrossRefGoogle ScholarPubMed
Blad, EJ, Miguel, JS, Nagler, A, et al. The prolonged time to progression with pegylated liposomal doxorubicin + bortezomib versus bortezomib alone in relapsed or refractory multiple myeloma is unaffected by extent of prior therapy or previous anthracycline exposure. ASH Annual Meeting Abstracts 2007;110(11):410.Google Scholar
Popat, R, Oakervee, HE, Foot, N, et al. A phase I/II study of bortezomib and low dose intravenous melphalan (BM) for relapsed multiple myeloma. ASH Annual Meeting Abstracts 2005;106(11):2555.Google Scholar
Davies, FE, Wu, P, Jenner, M, Srikanth, M, Saso, R, Morgan, GJ.The combination of cyclophosphamide, velcade and dexamethasone induces high response rates with comparable toxicity to velcade alone and velcade plus dexamethasone. Haematologica 2007;92(8):1149–50.CrossRefGoogle ScholarPubMed
Kropff, M, Bisping, G, Schuck, E, et al. Bortezomib in combination with intermediate-dose dexamethasone and continuous low-dose oral cyclophosphamide for relapsed multiple myeloma. Br J Haematol 2007;138(3):330–7.CrossRefGoogle ScholarPubMed
Zangari, M, Barlogie, B, Burns, MJ, et al. Velcade (V)-thalidomide (T)-dexamethasone (D) for advanced and refractory multiple myeloma (MM): long-term follow-up of phase I-II trial UARK 2001–37: superior outcome in patients with normal cytogenetics and no prior T. ASH Annual Meeting Abstracts 2005;106(11):2552.Google Scholar
Padmanabhan, S, Miller, K, Musiel, L, et al. Bortezomib (Velcade) in combination with liposomal doxorubicin (Doxil) and thalidomide is an active salvage regimen in patients with relapse or refractory multiple myeloma: final results of a phase II study. Haematologica 2006;91(suppl 1):277.Google Scholar
Hollmig, K, Stover, J, Talamo, G, et al. Bortezomib (VelcadeTM) + AdriamycinTM + Thalidomide + Dexamethasone (VATD) as an effective regimen in patients with refractory or relapsed multiple myeloma (MM). ASH Annual Meeting Abstracts 2004;104(11):2399.Google Scholar
Ciolli, S, Leoni, F, Casini, C, Breschi, C, Bosi, A.Liposomal doxorubicin (Myocet®) enhance the efficacy of bortezomib, dexamethasone plus thalidomide in refractory myeloma. ASH Annual Meeting Abstracts 2006;108(11):5087.Google Scholar
Palumbo, A, Ambrosini, MT, Benevolo, G, et al. Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 2007;109(7):2767–72.Google ScholarPubMed
Terpos, E, Anagnostopoulos, A, Heath, D, et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide (VMDT) is an effective regimen for relapsed/ refractory myeloma and reduces serum levels of Dickkopf-1, RANKL, MIP-1{alpha} and angiogenic cytokines. ASH Annual Meeting Abstracts 2006;108(11):3541.Google Scholar
Richardson, PG, Jagannath, S, Avigan, , et al. Lenalidomide plus bortezomib (Rev-Vel) in relapsed and/or refractory multiple myeloma (MM): final results of a multicenter phase 1 trial. ASH Annual Meeting Abstracts 2006;108(11):405.Google Scholar
Richardson, P, Jagannath, S, Raje, N, et al. Lenalidomide, bortezomib, and dexamethasone (Rev/Vel/Dex) in patients with relapsed or relapsed/refractory multiple myeloma (MM): preliminary results of a phase II study. Blood (ASH Annual Meeting Abstracts) 2007;110(11):2714.Google Scholar
Mitsiades, CS, Mitsiades, NS, Mcmullan, CJ, et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006; 107(3):1092–100.CrossRefGoogle ScholarPubMed
Mitsiades, N, Mitsiades, CS, Poulaki, V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002;99(22):14374–9.CrossRefGoogle ScholarPubMed
Richardson, PG, Chanan-Khan, AA, Alsina, M, et al. Safety and activity of KOS-953 in patients with relapsed refractory multiple myeloma (MM): interim results of a phase 1 trial. ASH Annual Meeting Abstracts 2005;106(11):361.Google Scholar
Richardson, P, Chanan-Khan, AA, Lonial, S, et al. A multicenter phase 1 clinical trial of tanespimycin (KOS-953) + bortezomib (BZ): encouraging activity and manageable toxicity in heavily pre-treated patients with relapsed refractory multiple myeloma (MM). Blood (ASH Annual Meeting Abstracts) 2006;108(11):406.Google Scholar
Richardson, P, Chanan-Khan, AA, Lonial, S, et al. Tanespimycin (T) + bortezomib (BZ) in multiple myeloma (MM): Pharmacology, safety and activity in relapsed/refractory (rel/ref) patients (Pts). J Clin Oncol 2007;25:3532.Google Scholar
Hideshima, T, Catley, L, Yasui, H, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006;107(10):4053–62.CrossRefGoogle ScholarPubMed
Richardson, P, Jakubowiak, A, Wolf, J, et al. Phase I/II report from a multicenter trial of perifosine (KRX-0401) + bortezomib in patients with relapsed or relapsed/refractory multiple myeloma previously treated with bortezomib. ASH Annual Meeting Abstracts 2007;110(11):1170.Google Scholar
Garcia-Mata, R, Gao, YS, Sztul, E.Hassles with taking out the garbage: aggravating aggresomes. Traffic 2002;3(6):388–96.CrossRefGoogle ScholarPubMed
Kawaguchi, Y, Kovacs, JJ, Mclaurin, A, Vance, JM, Ito, A, Yao, TP.The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003;115(6):727–38.CrossRefGoogle ScholarPubMed
Hideshima, T, Bradner, JE, Wong, J, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005;102(24):8567–72.CrossRefGoogle ScholarPubMed
Mitsiades, CS, Mitsiades, NS, Mcmullan, CJ, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004;101(2):540–5.CrossRefGoogle ScholarPubMed
Weber, DM, Jagannath, S, Mazumder, A, et al. Phase I trial of oral vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) in combination with bortezomib in patients with advanced multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2007;110(11):1172.Google Scholar
Badros, A, Philip, S, Niesvizky, R, et al. Phase I trial of suberoylanilide hydroxamic acid (SAHA) + bortezomib (Bort) in relapsed multiple myeloma (MM) patients (pts). ASH Annual Meeting Abstracts 2007;110(11):1168.Google Scholar
Prince, M, Quach, H, Neeson, P, et al. Safety and efficacy of the combination of bortezomib with the deacetylase inhibitor romidepsin in patients with relapsed or refractory multiple myeloma: preliminary results of a phase I trial. ASH Annual Meeting Abstracts 2007;110(11):1167.Google Scholar
Hideshima, T, Akiyama, M, Hayashi, T, et al. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 2003;101(2):703–5.CrossRefGoogle ScholarPubMed
Chauhan, D, Velankar, M, Brahmandam, M, et al. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 2007;26(16):2374–80.CrossRefGoogle ScholarPubMed
Chauhan, D, Neri, P, Velankar, M, et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 2007;109(3):1220–7.CrossRefGoogle Scholar
Tai, YT, Dillon, M, Song, W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 2007 Oct 9. [Epub ahead of print].Google ScholarPubMed
Moreau, P, Hulin, C, Facon, T, et al. Phase I study of AVE1642 anti IGF-1R monoclonal antibody in patients with advanced multiple myeloma. ASH Annual Meeting Abstracts 2007; 110(11):1166.Google Scholar
Podar, K, Raab, MS, Zhang, J, et al. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood 2007;109(4):1669–77.CrossRefGoogle Scholar
Chauhan, D, Singh, A, Brahmandam, M, et al. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 2008;111(3):1654–64.CrossRefGoogle ScholarPubMed
Sonneveld, P, Hajek, R, Nagler, A, et al. Impact of prior thalidomide (T) therapy on the efficacy of pegylated liposomal doxorubicin (PLD) and bortezomib (B) in relapsed/refractory multiple myeloma (RRMM). J Clin Oncol (Meeting Abstracts) 2007;25(18 suppl):8023.Google Scholar
Chanan-Khan, AA, Weber, D, Dimopoulos, M, et al. Lenalidomide (L) in combination with dexamethasone (D) improves survival and time to progression in elderly patients (pts) with relapsed or refractory (rel/ref) multiple myeloma (MM). ASH Annual Meeting Abstracts 2006;108(11):3551.Google Scholar
Richardson, PG, Sonneveld, P, Schuster, MW, et al. Safety and efficacy of bortezomib in high-risk and elderly patients with relapsed multiple myeloma. Br J Haematol 2007;137(5): 429–35.CrossRefGoogle ScholarPubMed
,Celegene Corporation. THALOMID (thalidomide) product information. Summit, NJ, USA 2006; Available at: www.celgene.com/PDF/ThalomidPI.pdf.
Chanan-Khan, AA, Kaufman, JL, Mehta, J, et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 2007;109(6):2604–6.CrossRefGoogle ScholarPubMed
Tosi, P, Zamagni, E, Cellini, C, et al. Thalidomide alone or in combination with dexamethasone in patients with advanced, relapsed or refractory multiple myeloma and renal failure. Eur J Haematol 2004;73(2):98–103.CrossRefGoogle ScholarPubMed
Ludwig, H, Adam, Z, Hajek, R, et al. Recovery of renal impairment by bortezomib-doxorubicin-dexamethasone (BDD) in multiple myeloma (MM) patients with acute renal failure. Results from an ongoing phase II study. ASH Annual Meeting Abstracts 2007;110(11):3603.Google Scholar
Reece, , Masih-Khan, E, Chen, C, et al. Use of lenalidomide (Revlimid(R) ± corticosteroids in relapsed/refractory multiple myeloma patients with elevated baseline serum creatinine levels. ASH Annual Meeting Abstracts 2006;108(11):3548.Google Scholar
Chen, N, Lau, H, Kong, L, et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol 2007;47(12):1466–75.CrossRefGoogle ScholarPubMed
Jagannath, S, Richardson, PG, Sonneveld, P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 2007;21(1):151–7.CrossRefGoogle ScholarPubMed
Bahlis, NJ, Mansoor, A, Lategan, JC, et al. Lenalidomide overcomes poor prognosis conferred by deletion of chromosome 13 and t(4;14) in multiple myeloma: MM016 Trial. ASH Annual Meeting Abstracts 2006;108(11):3557.Google Scholar
Metzler, , Krebbel, H, Hecht, M, et al. Bortezomib inhibits human osteoclastogenesis. Leukemia 2007;21(9):2025–34.CrossRefGoogle Scholar
Breitkreutz, I, Raab, MS, Vallet, S, et al. Lenalidomide and bortezomib: targeting osteoclastogenesis, osteoclast survival factors, and bone remodeling markers in multiple myeloma. ASH Annual Meeting Abstracts 2007;110(11):1184.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×