Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T08:42:13.875Z Has data issue: false hasContentIssue false

3 - Methodology

Published online by Cambridge University Press:  07 October 2009

C. A. Nieto de Castro
Affiliation:
University of Lisbon, Portugal
W. A. Wakeham
Affiliation:
Imperial College, London, UK
J. H. Dymond
Affiliation:
University of Glasgow
C. A. Nieto de Castro
Affiliation:
Universidade Nova de Lisboa, Portugal
Get access

Summary

Introduction

It is now estimated that there are some 50 million pure chemicals known of which some 20,000 are listed as high–volume, major chemicals by the European Economic Community (Forcheri & de Rijk 1981) some of which may be transported across national borders. For each pure fluid there are approximately 30 properties which are of technological significance of which twelve are functions of temperature and pressure. If just these twelve properties are considered and it is assumed that measurements at only ten pressures and ten temperatures are required then to provide the necessary information for only one pure fluid requires 1200 measurements. If all the pure species and all possible mixtures from among the set of bulk chemicals are included and composition is allowed as a variable then it is rather easy to estimate that, even for a generous estimate of the rate of experimental data acquisition in the world, the total effort required to fulfill the needs identified in Chapter 2 would exceed 100 billion man–years. This figure makes it immediately obvious that industry's needs for physical property data can never be met by measurement alone. It is therefore necessary to replace a complete program of measurements by an alternative strategy designed to meet the same objective. The philosophy and methods for the establishment of such a strategy have been discussed by many authors and have been updated regularly and most recently by Nieto de Castro & Wakeham (1992).

Type
Chapter
Information
Transport Properties of Fluids
Their Correlation, Prediction and Estimation
, pp. 17 - 26
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×